Incidence of Nocardiosis among Patients with Lower Respiratory System infections

Enas A. Bady1, Kawther H.Mahdi2, Mohammed Y. Naji3 and Dheyaa B. Al-Rubeai 4

1College of Pharmacy, University of Basrah, Iraq

2 College of Science, University of Basrah, Iraq

3 College of Medicine, University of Basrah, Iraq

4Director of respiratory and chest disease center, Basrah, Iraq

ABSTRACT

A total of 93patients suffering from lower respiratory tract infections, including tuberculosis (44) and bronchitis (49) were recorded from December 2012 to February 2013. The patients ranged from 10 to 98 years of age and 57 male and 36female. Culturing of sputum samples onto Sabouraud dextrose agar was performed to the isolation of *Nocardia*. A total of 27Nocardia genus were isolated from patients used in this study; 5isolates were tuberculosis patients, 10 isolates were bronchitis patients, 5 isolates were tuberculosis and smoking patients, 1 isolate wase tuberculosis, smoking and diabetes mellitus patients, 2 isolates were bronchitis and diabetes mellitus patients and 4 isolates were bronchitis and smoking patients. The *Nocardia* isolates were showed the highest susceptibility against ofloxacin and ciprofloxacin and the lowest susceptibility against cefotaxime and erythromycin, but the isolates were resistant to oxacillin and rifampicin. Five isolates of *Nocardia* examined for susceptibility against eight hand sanitizer gels and eleven disinfectants. The results showed that the isolates of *Nocardia* were susceptibile against three hand sanitizer gels and nine disinfectants.

Keywords: *Nocardia*, respiratory tract infections, antibiotics, disinfectants, sanitizer gels.

No. 2

INTRODUCTION

Among the actinomycetes, members of the genus Nocardia are with the exception of mycobacteria, the most commonly implicated pathogens in human disease, mostly as opportunists (Beaman etal., 1995). Nocardia cause a variety of human infections including cutenous, pulmonary and systemic nocardiosis and most commonly presents as pulmonary disease (McNeil and Brown, 1994). Nocardia is a gram- positive aerobic bacteria and partially acid -fast (Chun and Goodfellow, 1995) and can formed filamentous branches that fragment into rod or coccid cells similar to fungal hyphae (Maza et al., 2004). Nocardia species is found world widely in the water. Infections acquired soil and to the pulmonary routes inhalation traumatic inoculation to the cutaneous routes immunocompetent and immunocompromised patients (Forbes al.,2007) such as patients with AIDS (McNeil and Brown, 1994), elderly persons (Koneman et al.,1997), people on chronic steroid therapy, those with cancer, organ or bone marrow transplantation and HIV(Valenzuela-Tovar etal..2005). diabetes mellitus and liver cirrhosis (Salh al.,1988),sickle etanemia(Sharma et al.,2007). infection is called nocardiosis which may lead to secondary and fatal involvement with the brain, lung and meningitis alone or in combination with other organs and associated with a high mortality, especially when an appropriate antibiotic treatment is delayed (McNeil and Brown, 1994).Pulmonary tuberculosis mimics pulmonary nocardiosis both clinically and radio logically and many a time it is wrongly treated with tuberculosis drugs (Chopra et al., 2001).

Hospital community-acquired and infections constitute a serious public health problem all over the world (Hassan et al., 2012). Hospital acquired (nosocomial) developing infections are infections hospitalized patients (Atul-Jain, 2007).

Community-acquired infections on the other hand are those acquired anywhere other than in a healthcare facility such as schools, exercise facilities, or any place where people come in contact with others or with surfaces that have been contaminated(Hassan et al.. 2012). Hands are regarded as a major source of transmitting infection. It has been estimated that there are not less than 10000 organisms per cm2 of normal skin. This includes both nonpathogenic resident flora as well as pathogenic transient flora (Carter et al., 2000). More than 1.4 million people worldwide are suffering from infections acquired in hospitals. These nosocomial infections are also, in most cases, the result of poor hand hygiene. Thus, hand hygiene is a key component of good hygiene practices in the home and community and can produce significant benefits in terms of reducing the incidence of infection, most particularly gastrointestinal infections but also respiratory tract and skin infections (Bloomfield, 2007). Decontamination of hands can be carried out by washing hands with soap or by the use of hand sanitizer gels which may be either alcoholic (ethanol, isopropanol, and/or n-propanol are used) or non-alcoholic (benzalkonium chloride or the chlorinated aromatic compound triclosan or povidoneiodineaqueous) (Kumud et al., 2012).

Disinfectants are chemicals agents that destroy the growing forms of bacteria but do not destroy spore forms of microorganism. Disinfectants are applied on lifeless things resembling floor and work benches as phenols, hypochlorite chlorhexidine, and alcohol (Zuhlsdorf et al., 2004). The investigation aimed to isolation of Nocardia from patients with respiratory infections and testing inhibition of *Nocardia* by antibiotics, hand sanitizer gels and disinfectants.

MATERIALS AND METHODS

A total of 93 sputum samples were collected from patients with respiratory infections in the respiratory and chest disease center in Basra city from December 2012 to February 2013. The patients were included tuberculosis (44) and bronchitis (49), (13) were immunocompromised (with diabetes mellitus diseases) and (20) were smoking. The patients ranged from 10 to 98 years of age and 57 male and 36female. The clinical specimens from the sputum were inoculated onto Sabouraud dextrose agar for 3 weeks at 37°C (Singh et al., 1987). The antifungal agent cyclohexamide (actidione) at 50 µg /ml was added to the sterilized media at 46°C (Nazar et al., 1986) . Colonies were then stained with Gram staining and acid- fast staining by Ziehl-Neelsen method (Benson, 2002). Conventional and specific biochemical tests were used for the identification of Nocardia (Forbes et al., 2007).

The isolates were tested for their sensitivity to antibiotics by using the standard

disc diffusion method (Bauer et *al.*, 1966). A sterile cotton swab soaked in the bacterial suspension was used to inoculate the organisms onto the surface of Mueller-Hinton agar plates. The plates were incubated at 35°C for 48 hours. The resultant inhibition zone diameter for each disc was measured.

Seven types of alcohol hand sanitizer gels and ethanol 70% (prepared at the moment of use by mixing 70 ml absolute ethyl alcohol and 30 ml distilled water) were used in this study purchased from local market and pharmacy as in table (1). The agar well diffusion assay as described by Kudi et al. (1999) was used to determine the inhibitory effect of various alcohol hand sanitizer gels and ethanol 70% on the bacterial growth. A sterile cork-borer (5 mm diameter) was used to make wells in the set agar. A McFarland 0.5 standardized bacterial suspension is swabbed over the surface of a Mueller- Hinton agar plate. 100ul of the alcohol hand sanitizer gels and ethanol 70% were added to each well and the plates were incubated overnight at 37°C. Antibacterial activity was recorded if a zone of growth inhibition around the well is present (Mahon et al., 1998).

Table (1). Alcohol hand sanitizer gels used in the study and their ingredients.

No.	Product	Ingredients	Industrial Co.
1	FEAH	Aqua, carbomer, ethanol, aminomethylpropanol, isopropyl myristate, propylene glycol, vitamine E, fragrance.	U.A.E.
2	MARCH	Ethanol ,glycerin,vitamine	Amman
3	HYGEL	62% ethanol ,glycerin	U.A.E.
4	WORLD WORKS	62% ethanol	China
5	HiGeen	70% ethanol, glycerin, carbomer, Acrylate/c10-30 akyl acrylate cross polymer, triethano- lamine, hydroxyl propyl,methylcellulose, tocopheryl acetate,cellulose,lactose.	Jordon
6	Chicco	Alcohol denat, copolymer, propylene glycol, tetrahydroxy propyl, ethylenediamine.	Italy
7	Clean	75% ethanol,carbomer	Syria
8	Ethanol 70%	Ethanol 70%	BDH

Eleven types of disinfectants were purchased from local pharmacy are used in this study as in table (2). The antibacterial activity was determined according to (Kudi *et al.* 1999 and Mahon *et al.*, 1998). Results were analysed statistically by T-test.

Table (2). Disinfectants used in this study and their formulations and concentrations

No.	Disinfectants	Formulation	ion Industrial Co.		
1	Poviofix	Povidone- iodine	Turkey	10 %	
2	Sarttol	Dichloro-meta	Jordon		
2	Sartioi	Xylen,IPA,soap and pine oil		-	
3	MTG	Dichloro hexadine, IPA and	Jordon		
3	MIG	potassium chloride		-	
4	Flash	Dimethyle benzyl ammonium	Turkey	10 %	
4	Fiasii	chloride and hydrochloric acid			
5	Нарру	Hydrogen,peroxide, asyl cator	Turkey	-	
6	Formaldehyde	Formaldehyde	BDH	-	
7	H_2O_2	H_2O_2	BDH	3%	
8	Dettole	Chloroxylenol	Iraq	-	
9	SEHAT	Sodium hypochlorite	Iran	-	
10	ZODA	Sodium hypochlorite	Iran	-	
11	Isopropanol	Isopropanol	BDH	%100	

RESULTS

Among the 93sputum samples studied, a total of 27 nocardial isolates were detected from 25 sputum samples as 11 isolates from10 samples of tuberculosis patients and16 isolates from 15 samples of bronchitis patients (table3). Five isolates from 5 patients with tuberculosis only, 5 isolates from 4 patients

with tuberculosis and smoking,1isolate from1patient with tuberculosis, smoking and diabetes mellitus,10 isolates from 10 patients with bronchitis only,2 isolates from2 patients with bronchitis and diabetes mellitus and 4 isolates from 3 patients with bronchitis and smoking. Among of the 27 *Nocardia* isolates, 22were detected in males and 5 in females (table 4).

Table (3): Clinical data of sputum samples.

sputum samples	No. of samples	No. of <i>Nocardia</i> positive samples	% of positive samples	No. of <i>Nocardia</i> isolates
Tuberculosis	44	10	22.73	11
Bronchitis	49	15	30.61	16
Total	93	25	26.9	27

Table (4): Clinical data of positive *Nocardia* groups.

Positive groups	Age	Male	Female	Total No.	No. of <i>Nocardia</i> isolates
Tuberculosis	30-48	3	2	5	5
Tuberculosis and smoking	36-55	4	-	4	5
Tuberculosis, smoking and diabetes	24	1	-	1	1
mellitus					
Bronchitis	12-98	7	3	10	10
Bronchitis and diabetes mellitus	31-45	2	-	2	2
Bronchitis and smoking	40-47	3	-	3	4
Total	12-98	20	5	25	27

The activity of 14 antibiotics against 14 isolates of *Nocardia* is presented in (table5). The sputum isolates of *Nocardia* were recorded significant differences, the highest susceptibility against ofloxacin and ciprofloxacin and the lowest susceptibility against cefotaxime and erythromycin. The susceptibility to other antimicrobial agents was variable; 50% of the isolates were susceptible to kanamycin, 36% to amikacin, penicillin and gentamycin, 29% to nalidixic

acid and vancomycin, 21% to tobramycin and 14% to clindamycin. All the isolates were resistant to oxacillin and rifampicin. Twentynine per cent of the isolates showed intermediate susceptibility to erythromycin, 21% to nalidixicacid, 14% to clindamycin and rifampicin and 7% to gentamycin, tobramycin, amikacin and vancomycin.

Table (5): Susceptibility percentage of 14 *Nocardia* isolates against 14 antibiotics according to Benson (2002).

Antbiotics	Disk potency	%Susceptible	%Intermediate	%Resistant
Ofloxacin	5μg	57.1	0	42.8
Ciprofloxacin	5μg	57.1	0	42.8
Kanamycin	30µg	50	0	50
Amikacin	30µg	35.7	7.1	57.1
Penicillin	10U	35.7	0	64.2
Gentamycin	10µg	35.7	7.1	57.1
Nalidixic acid	30µg	28.5	21.4	50
Vancomycin	30µg	28.5	7.1	64.2
Tobramycin	10µg	21.4	7.1	71.4
Clindamycin	2μg	14.2	14.2	71.4
Cefotaxime	30µg	7.1	0	92.8
Erythromycin	15µg	7.1	28.5	64.2
Oxacillin	1µg	0	0	100
Rifampicin	5μg	0	14.2	85.7

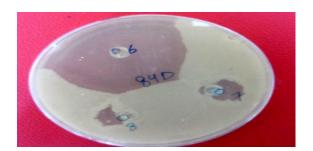
Table 6 below shows the significant differences of susceptibility pattern of 5 *Nocardia* isolates to the hand sanitizers in the agar diffusion test. All alcohol hand sanitizer

gels tested showed no inhibitory effect against *Nocardia* isolates except FEAH gel, HiGeen gel and ethanol 70% against isolate (3) with inhibition zone (15,12,13mm) respectively.

Table (6): Susceptibility pattern of 5 *Nocardia* isolates to alcohol hand sanitizer gels.

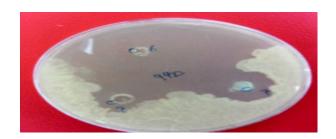
Gel	N.(1)	N.(2)	N.(3)	N.(4)	N.(5)
	IZ(mm)	IZ(mm)	IZ(mm)	IZ (mm)	IZ(mm)
FEAH	-	-	15	-	-
MARCH	=	-	=	-	-
HYGEL	=	-	=	-	-
WORLD WORKS	=	-	=	-	-
HiGeen	=	-	12	-	-
Chicco	=	-	=	-	-
Clean	-	-	-	-	-
Ethanol 70%	-	-	13	-	-

- No inhibition


Table 7 below shows the significant differences of susceptibility pattern of 5 *Nocardia* isolates to the 11 disinfectants in the agar diffusion test. Flash and Formaldehyde were the only products that showed inhibitory activity against all the tested isolates with the

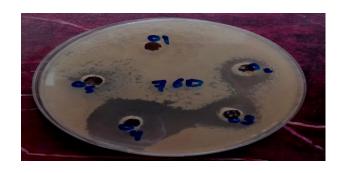
highest activity (66 mm) and the lowest (18 mm). Sarttol, MTG, H₂O₂ were active against some tested isolates and Happy, Dettole, Sehat and Isopropanol were active against one tested isolate. Poviofix and Zoda showed no activity against all the tested isolates.

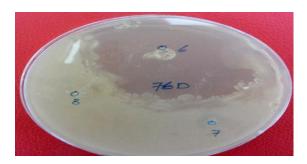
Table (7): Susceptibility pattern of 5 *Nocardia* isolates to disinfectants

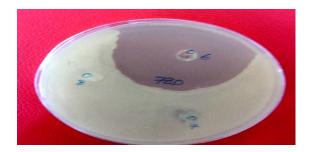

Disinfectant	N.(1)	N.(2)	N.(3)	N.(4)	N.(5)
	IZ(mm)	IZ(mm)	IZ(mm)	IZ(mm)	IZ(mm)
Poviofix	-	-	-	1	-
Sarttol	13	15	-	17	20
MTG	12	15	ı	20	20
Flash	18	24	27	30	20
Нарру	15	-	ı	ı	-
Formaldehyde	57	66	52	66	55
H_2O_2	15	25	25	ı	-
Dettole	ı	20	ı	ı	-
SEHAT Bleaching	ı	-	35	ı	-
ZODA Bleaching	-	-	-	-	=
Isopropanol	-	-	25	_	-

-No inhibition

Nocardia 1


Nocardia 2




Nocardia 3

Nocardia 4

Nocardia 5

Figure (1): Inhibition zones diameter (mm) of *Nocardia* isolates against 11 disinfectants used in this study.

DISCUSSION

Nocardia belongs the aerobic to that infrequently actinomycetes are encountered in clinical practice but are considered medically important (Beaman & Beaman, 1994 and McNeil and Brown, 1994). Manifestations and severity of infection caused by this group are extremely variable. Their clinical presentation is often nonspecific .Diagnosis is limited by the difficulty of isolation because of its slow growth and the need for invasive diagnostic procedures to obtain culture specimen (Lerner, 1996). The microorganism was first described by Nocard in 1888 as a fungus and was further classified as an aerobic bacteria that belongs to the order Actinomycetales. genus Nocardia. (Beaman and Sugar, 1983). Nocardiosis is a worldwide disease known as an infection that affects predominantly patients with immunodepressive diseases (Beaman & Beaman, 1994).

The result of this study showed that the 27Nocardia isolates were identified from a total of 93 sputum samples collected from patients with respiratory tract infections included 11 with tuberculosis and 16 with bronchitis (table1). This result was agreement with (El Hassan et al., 2010) who revealed that Nocardia considerable occurrence among patients with pulmonary infections giving clinical symptoms similar to M.tuberculosis those occur by

infection, therefore, must be suspicion of pulmonary nocardiosis in immunocompromised patients, when the clinical and radiological picture mimics pulmonary tuberculosis but sputum is negative for AFB and patient is not responding to anti_tuberculosis drugs(Chopra et al., 2001). Among the 27Nocardia isolates, 3were detected from diabetes mellitus patients(immunocompromised), this result was agreed with previous study that reported case of pulmonary infection with *Nocardia* in Britain in woman suffered from diabetes mellitus and cirrhosis probably contributed impaired cell mediated immunity(Salh et al.,1988).

Out of the 27 *Nocardia* isolates, 22were detected in males (7 with smoking) and 5 in females. Several investigators have reported that *Nocardia* infections were more frequently recognized in males than in females (Boiron *et al.* 1990 and Georghiou and Blacklock, 1992). This higher incidence of nocardiosis in males may be attributed to factors such as smoking, which was more frequently seen in males than in females in our area. The other factor may be that male and female sex hormones differently affect the growth or virulence of *Nocardia* (Hernandez-Hernandez et *al.*, 1995).

Also, 27 *Nocardia* isolates in this study showed the highest susceptibility against quinolones such as ofloxacin and ciprofloxacin. Twenty-seven isolates in this

oxacillin study were resistant to and rifampicin. The other antimicrobials showed the variable effects against 27 Nocardia (table5). These results isolates were agreement with previous studies. ElHassan and El- Hamid(2005) were indicated that all Nocardia isolates which identified from pulmonary infections in Sudan were sensitive ciprofloxacin, amikacin, clindamycin, gentamycin, Tobramycin and vancomycin, but resistance to oxacillin. Al-Habib and Abdulla (2008) and Larruskain et al. (2011) were concluded that amikacin one of the most important antimicrobials agents effective against Nocardia. Gomez-Flores etal. (2004) were observed that some antimicrobials such as amikacin, gentamicin and tobramycin have an effect on more than 66% of the Nocardia strains isolated from clinical specimens but reported that quinolones such ciprofloxacin and ofloxacin did not show any significant activity against the Nocardia isolates.

Hand hygiene is a means of making hands free of pathogens by using water with soap, hand rub or waterless sanitizers (Busari et al., 2012). Hand sanitizers are well-adapted to the skin (Pedersen et al., 2005) and work by stripping away the outer layer of oil on the skin and also remove the cutaneous microflora (Axel et al., 2002). Ethanol has the record of being the oldest skin disinfectant; it acts as a permeation enhancer when applied topically to human skin. (Lachenmeier, 2008). Alcohol is used as the main antibacterial component of most waterless antiseptic agents due to its antimicrobial properties (Boyce and Pittet, 2002) and alcohol-hand sanitizer gel has significantly high efficacy reducing in transient micro flora on the hand (Verma et 2013). The antimicrobial activity of alcohols is based on its capacity to induce microbial protein denaturation. These were to have excellent and germicidal activity against vegetative bacteria, fungi, and many viruses (Kumud et al., 2012).

The result of table 6 showed that all alcohol hand sanitizer gels used in this study no exhibited any inhibitory effect against Nocardia isolates except FEAH gel, HiGeen gel and ethanol 70% against Nocardia 3 inhibition zone (15,12,13mm) isolate with respectively. Several studies suggested that, sanitizers with at least 70% alcohol kill 99.9% of the bacterial hands (Rotter, 1999) and effective against murine norovirus and feline calicivirus (Park et al., 2010). Alcohols cause damage to the cell membrane and rapid protein denaturation (McDonnell and Russell, 1999). However, previous studies showed that not all sanitizers are equally effective in eradicating all germs (Centers for Disease Control, 2003 and Garner and Favero, 1986). While some studies reported high efficacy of hand sanitizers in reducing the microbial flora of hand, other studies failed to show such efficacy of hand sanitizers (Blaney et al., 2011and Liu et al., 2010).

No. 2

Antiseptics and disinfectants are widely used in hospitals for various topical and hard surface applications. They play an essential role in the control of infection and prevention of nosocomial infections (Abadias et al., 2008 and Edgeworth, 2011). There is a wide variety of active ingredients to be found in different antiseptics and disinfectants (McDonnell and Russell, 1999). A variety of commercially available disinfectants are used by the public in their homes. In addition to commercially available products, several natural products also have been used by the public or for home health care (Chatburn et al., 1988). In recent years; concern for the environment has resulted in a movement to eliminate or replace antimicrobials such as disinfectants with environmentally safe or "green" alternative chemicals (Parnes, 1997). The results of table 7 showed that the disinfectants used in this study exhibited different activity against Nocardia isolates. Flash and formaldehyde were more effective followed by sarttol, MTG, H₂O₂ and happy, dettole, sehat, isopropanol respectively. Poviofix and zoda showed no activity against tested isolates.

Vol.23

No. 2

Formaldehyde as a highly effective, broad spectrum disinfectant, which typically achieve sterilization by denaturing proteins and disrupting nucleic acids (Ewart, 2001) of fungi, viruses, mycobacteria, spores (Jeffrey,1995) and was found to be very effective in controlling the bacteria when compared with antibiotics (Sahul and Balasubramanian. 2000). Oxidizing agents are broad spectrum, peroxide based compounds that function by the proteins denaturing and lipids microorganisms (Maris, 1995) and vary in their microbiocidal range, but are considered effective on hard surfaces and equipment (Grooms, 2003). Hydrogen peroxide considered as a bactericidal, virucidal (nonenveloped viruses may be resistant), fungicidal and at high concentrations sporicidal. Its activity against mycobacteria is limited (Jeffrey, 1995). A published suggestion for treatment of jaw osteomyelitis caused by actinomycetes (Nocardia) includes surgical debridement of the lesion followed by surgical fistulation to allow lavage with sterile water, hydrogen peroxide and sodium hypochlorite (American Association of Zoo Veterinarians Infectious Disease Committee Manual 2013).

years iodine has For many been recognized as an effective broad- spectrum biocidal agent against bacteria, yeast and molds, Actinomycetes especially Nocardia and rickettsia (Jayaraja Kumar et al., 2009). Iodine, in the form of an aqueous or alcoholic solution, has been used as an antiseptic for 150 years. The precise mode of action of iodine is unknown. **Iodine** penetrates into the microorganisms and attacks certain groups of proteins, nucleotides and fatty acids. This leads to eventual cell death (McDonnell and Russell, 1999). Actenomyces israelii were highly susceptible to the antimicrobial action of sodium hypochlorite solution (Barnard et

al., 1996), due to oxidative interaction with sulfydryl on certain enzymes that can be found in the cell membrane inhibited the cellular proteins' (Bodik et al., 2008) and affect bacterial DNA through the formation of chlorinated derivatives of nucleotide bases (McDonnell and Russell, 1999). hypochlorite feed design option was chosen to inactivate and separate nocardioform bacteria within a concentrated scum manhole after aeration basin surface wasting (Nicole et al., 2012). Some of the disinfectants did not inhibit the growth of the tested bacteria probably as a result of low concentrations or lack of biocides in them and or noncompliance to stringent condition (good manufacturing practices) during production among other reasons. Gross contamination of hand sanitizer during manufacturing may also compromise their effectiveness and or quality and possibly lead to infection of the users eventually (Voss Widmer, 1997). Most species and susceptible sodium hypochlorite, formaldehyde, ethanol, propanol, hydrogen peroxide and iodine (Collins and Kennedy, 1999). Ethyl alcohol and isopropyl alcohol causes damage to the cell membrane and rapid protein denaturation. Many alcohol products include low levels of other biocides which remain after the alcohol has evaporated (McDonnell and Russell, 1999).

Some of the sanitizers examined did not inhibit the growth of the test bacteria probably as a result of low concentrations or lack of biocides in them and or noncompliance to stringent condition (good manufacturing practices) during production among other reasons. Gross contamination of hand sanitizer during manufacturing may also compromise their effectiveness and or quality and possibly lead to infection of the users eventually (Voss and Widmer, 1997).

REFERRENCES

1-Al-Habib, H. M. and Abdulla, Z. A. (2008). A microbiological study of *Nocardia*, Legionella, and

Mycoplasma isolated from respiratory tract infections in iraqi patients. JIMA: 38486-

IMANA. Page 104(orginal article).

- 2-American Association of Zoo Veterinarians Infectious Disease Committee Manual 2013.
- 3-Atul-Jain, K. S. (2007). Recent advances in the management of nosocomial infections. JK Science,

9(1): 3-8.

4-Barnard, D., Davies, J. and Figdor, Susceptibility D.(1996). of Actinomijces israelii to antibiotics,

sodium hypochiorite and calcium hydroxide. International Endodontic/oumal ., 29: 320-

326.

- 5-Bauer, A. W., Kinpy, W. N. and Turck, M. (1966). Antibiotic susceptibility testing by a standardization single discs, Amer. J. Clin. Pathol. 45: 493-496.
- 6-Beaman, B. L. and Suger, M. (1983).Nocardia in naturally aquired and experimental infections

in animals.J. Hyg. 91: 393-419.

7-Beaman, B. L. and Beaman, L.(1994). Nocardia species: host-parasite relationships. Clin.

Microbiol. Rev. 7(2): 213-264.

8-Beaman, B. L., Saubolle, M. A. and Wallace, (1995).Nocardia, J. Rhodococcus. Streptomyces,

Oerskovia, and other aerobic actinomycetes of medical importance, p. 379-380. In Murray,

P.R., Baron, E. J., Pfaller, M. A., Tenover, F. C. and Yolken, R. H. Manual of clinical

microbiology, 6th ed. American Society for Microbiology, Washington, D.C.

9-Benson, H. J. (2002). Microbiological applications. Laboratory manual in general microbiology.

8thed., The McGraw Hill companies, Inc. 1221 Avenue of the Americas, New York, NY

10020.

10-Blaney, D.D, Daly, E.R., Kirkland, K.B., Tongren, J.E., Kelso, P.T. and Talbot, E.A. (2011).

Control use of alcohol based hand sanitizers as a risk factor for norovirus outbreaks in long

term facilities in northern New England. Am. J. Infect. 39(4): 296-301.

11-Bloomfield, S. F. (2007).The Effectiveness of Hand Hygiene Procedures in Reducing The Risks

Infections Home of in and Community Settings Including Handwashing and Alcohol-Based

Hand Sanitizers", American Journal of Infection Control,35(10): S27-S64.

12-Boiron, P., Provost, F., Chevrier, G.and Dupont, B. (1992).Review of nocardial infections in

France 1987 to 1990. Eur. J. Clin. Microbiol. Inf. Dis., 11: 709-14.

13-Carter, S. J. (2000). Aseptic technique Cooper Gunn's Dispensing and for Pharmaceutical

Students, 12th Edition, **CBS** Publishers and Distributors: 494-540.

14-Centers for Disease Control (2003). Guideline for hand hygiene in health-care settings. Morbidity

Vol.23

and Mortality Weekly Report., 53: 431-433.

15-Chatburn, R.L., Kallstrom, T.J. and Bajaksouzian, S. (1988). A comparison of acetic acid with a

quaternary ammonium compound for disinfection of hand-held nebulizers. Respir. Care. ,

33:179-187.

16-Chopra, V., Ahir, G.C., Chand, G. and Jain, P. K. (2001). Pulmonary nocardiosis mimicking

pulmonary tuberculosis .Ind .J. Tub.,48(211): (211-213).

17-Chun, J. and Goodfellow, M. (1995). A phylogenetic analysis of the genus *Nocardia* with 16S

rRNA genes sequences. Int. J. Syst. Bact. 45: 240-245.

18-Collins, C.H. and Kennedy, D. A. (1999). Laboratory acquired infections. History, incidence,

causes and prevention (4th ed): 1-37 Woburn, MA: BH.

19-Edgeworth, J.D. (2011). Has decolonization played a central role in the decline in UK

methicillin-resistant *Staphylococcus* aureus transmission? A focus on evidence from

intensive care. J. Antimicrob. Chemother., 66 (2): 41-7.

20-El Hassan, M. M. and Hamid, M. E. (2005). In vitro antimicrobia sensitivity testing of *Nocardia*

africana strains recently isolated from patients with pulmonary infections in Sudan. Bahrain

Medical Bulletin, 27(1): 1-6.

21-El Hassan, M. M., Saeed, N. S., Hamid, M. E. and Goodfellow, M. (2010). Pulmonary

nocardiosis; similarity to tuberculosis (A bacteriological and proteomics Study). Egypt.

No. 2

Acad. J. biolog. Sci., 2(2): 15 - 25.

22-Ewart, S.L. (2001). Disinfectants and control of environmental contamination. In: Smith, B.L.

editor. Large Animal Internal Medicine: diseases of horses cattle, sheep and goats. 3rd ed.

St. Louis: Mosby:1371-1380.

23-Forbes, B. A.; Sahm, D. F. and Weissfeld, A. S. (2007). Bailey and Scott's diagnostic microbiology. 12th ed. Mosby Elsevier.

24-Garner, F.S. and Favero, M.S. (1986). CDC guideline for hand washing and hospital infection

control. Infect. Control., 231-235.

25-Georghiou, P.R. and Blacklock, Z.M.(1992). Infection with *Nocardia* species in Queensland: a

review of 102 clinical isolates. Med. J. Aust., 156:692-7.

26-Gomez-Flores, A., Welsh, O., Said-Fernandez, S., Lozano-Garza, G., and Tavarez-Alejandro,

R.E. and Vera-Cabrera, L. (2004). In Vitro In Vivo Activities of Antimicrobials against

Nocardia brasiliensis .Antimicrob Agents Chemother. 48(3): 832–837.

27-Grooms, D. (2003). Biosecurity guide for livestock farm visits. Michigan State University

Extension Bulletin E2842.

28-Hassan, A. O., Hassan, R.O., Muhibi, M. A. and Adebimpe, W. O. (2012). A survey of

Enterobacteriaceae in hospital and community acquired infections among adults in a tertiary

health institution in Southwestern Nigeria. Afr. J. Microbiol. Res., 6(24): 5162-5167.

29-Hernandez-Hernandez, F., Lopez-Martinez, R. and *et al.* (1995). *Nocardia brasiliensis:* in vitro

and in vivo growth response to steroid sex hormones. Mycopathologia 132 (2): 79-85.

30-Hernandes, S. E. D., Mello, A. C., Ana, J.J. S., Soares, V. S., Cassiolato, V., Garcia, L.B.,

Cardoso, C.L. (2004). The effectiveness of alcohol gel and other hand – cleansing agents

against important nosocomial pathogens. Brazilian J. of Microbio., 35:33-39.

31-Jayaraja Kumar, K., Hemanth Kumar, R..C, Gunashakaran, V., Ramesh, Y., Kalayan Babu, P.,

Pawan Narasimha,N., Venkatewarulu,A. and Lakshmikanth Reddy,P.(2009). Application of

broad spectrum antiseptic povidine iodine as powerful action: A review. J.of Pharma, Sci.

and Techno., 1(2): 48-58.

32-Jeffrey, D.J. (1995). Chemicals used as disinfectants: Active ingredients and enhancing additives.

Rev. sci. tech. Off. int. Epiz.:14(1):57-74.

33-Jessica Hilburn, M.T., Hammondb, B. S., Fendler, E. J. and Groziak, P.A. (2003). Use of alcohol

hand sanitizer as an infection control strategy in an acute care facility. Am. J. Infect. Control,

31(2):109-1916.

34-Koneman, E.W., Allen, S.D., Janda, W.M. and Schreckenberger, Winn W.C.Jr. (1997) Color

atlas and textbook of diagnostic microbiology, 5th ed., Lippincott, Philadelphia, USA, 651-708.

35-Kudi ,A., Umoh, J., Eduvie ,L. and Gefu,J. (1999). Screening of some Nigerian medicinal plants

for antibacterial activity. Ethnopharmacol., 67: 225-228.

36-Kumud, M., Neha, P. and Seema, T.(2012). Comparative evaluation of efficiency of alcoholic

Vs non- alcoholic hand sanitizers. Int. J. Life Sc. Bt & Pharm. Res.,1(4): 173-177.

37-Larruskain, J., Idigoras, P., Marimón, J. M. and Pérez-Trallero, E.(2011). Susceptibility of 186

Nocardia sp. Isolates to 20 Antimicrobial Agents Antimicrob Agents Chemother. 55(6):

2995–2998.

38-Lerner, P.I. (1996). Nocardiosis. Clin Inf. Dis., 22(6): 891-903.

39-Liu, P., Yuen, Y., Hsiao, H.M., Jaykus, L.A. and Moe, C. (2010). Effectiveness of liquid soap

and hand sanitizer against Norwalk virus on contaminated hands. Appl. Environ. Microbiol.

76(2): 394-399.

40-Mahon, C., Smith, L. and Burns, C. (1998). An introduction to clinical laboratory sci. W.B.

Saunders Company.,:37-43.

41-Maris,P. (1995).Modes of action of disinfectants. Rev. sci. tech. Off. int. Epiz. :14(1):47-55.

42-Maza, L. M.; Pezzlo, M. T.; Shigei, J. T., Peterson, E. M. (2004). Colour atlas of medical bacteriology. ASM Press. Washington, USA.

43-McDonnell, G. and Russell, A.D. (1999). Antiseptic and disinfectants: activity, action and

resistance. Clin. Microbiol. Rev., 12(1):147-179.

44-McNeil, M. M. and Brown, J. M. (1994). The medically important actinomycetes: epidemiology

and microbiology .Cited by Torres, R. D. C., Oletta, C. A. and Zlotnik, H. (1996). A rapid

and gentle method for isolation of genomic DNA from pathogenic *Nocardia* spp. Cli. and

Diagnostic Laboratory Immunology 3(5): 601-604.

45-Nazar, M., Jassim, M. Al-Hassan and Pridham, T. C. (1986). Thermodurant sandy desert soil

Streptomyces from plant rhizosphere exposed to natural gas. J. Univ. Kuwait, 13:220-225.

46-Nicole, D.A., Emily, D. and Kimberly, W.(2012). A chlorination system for the scum manhole at

the Sturbridge wastewater treatment plant . A major qualifying project proposal of Worcester Polytechnic Institute.

47-Park, G.W., Barclay, L., Macinga, D., Charbonneau, D., Pettigrew, C. A. and Vinje, J. (2010).

Comparative efficacy of seven hand sanitizers against Murine Norovirus, Feline Calicivirus,

and GII.4 Norovirus3. J. of Food Protection, 73(12): 2232–2238.

48-Parnes, C.A. (1997). Efficacy of sodium hypochlorite bleach and "alternative" products in

preventing transfer of bacteria to and from inanimate surfaces J. Environ. Health., 59:14-20.

49-Rotter, M. (1999). Hand washing and disnfection. In: Mayhall CG, ed. Hospital epidemiology

and infection control. 2nd ed. Baltimore: Williams and Wilkins. 1339-55.

50-Sahul, H. A.S. and Balasubramanian, G.(2000). Antibiotic resistance in bacteria isolated from

Artemia nauplii and efficacy of formaldehyde to control bacterial load. Aquaculture 183:

195–205.

51-Salh, B., Fegan, C., Hussain, A., Jaulim, A., Whale, K. and Webb, A. (1988). Pulmonary

infection with Nocardia caviae in a patient with diabetes mellitus and liver cirrhosis. Thorax.

43(11): 933–934.

52-Sharma, M., Gilbert, B. C., Benz, R. L. and Santoro, J. (2007). Disseminated *Nocardia*

Otitidiscaviarum infection in a woman with sickle cell anemia and end-stage renal disease.

The American J. of the Medical Sci. 333(6): 372-375.

53-Singh, M., Sandhu, R. S. and Randhawa, H. S. (1987). Comparison of paraffin baiting and

Vol.23

conventional culture techniques for isolation of *Nocardia asteroids* from sputum. J. Clin.

Microbiol. 25(1): 176-177.

- 54-Valenzuela-Tovar, J.F., Contreras-Perez, C., Shibayama-Hernandez, H. Chavez-Gonzalez, L., *et*
- al. (2005). Original article,
 Biochemical identification and molecular characterization (PCR-RFLP) of
 Nocardia isolates from sputum. Arch. of
 Medi. Res., 36:356–361.
- 55-Verma, D.K., Tesfu, K., Getachew, M., Workineh, Y., Mekuriaw, F. and Tilahun, M.(2013).

Evaluation of antibacterial efficacy of different hand gel sanitizers in university of Gondar

No. 2

students, north-west Ethiopia. J. of Global Biosci., 2(6): 166-173.

56-Voss, A. and Widmer, A.F.(1997). No time for handwashing!? Hand washing versus alcoholic

rub: can we afford 100% compliance? Infect Control Hosp Epidemiol, 18(3):205-208.

57-Zuhlsdorf, B., Floss, H. and Matiny, H. (2004). Efficacy of 10 different cleaning processes in a

washer-disinfector for flexible endospores. J. Hosp. Infect. , 56(4):305-311.

حدوث ال Nocardiosis بين مرضى إصابات الجهاز التنفسي السفلي

إيناس عبد الصاحب بادي1، كوثر هواز مهدي2 ، محمد يونس ناجي3 و ضياء بخيت الربيعي4

1- كلية الصيدلة- جامعة البصرة-العراق

2- كلية العلوم - جامعة البصرة-العراق

3- كلية الطب - جامعة البصرة-العراق

4- مدير مركز الأمراض التنفسية والصدرية- البصرة-العراق

الخلاصة

ثلاثة وتسعون مريضا يعانون من إصابات الجهاز التنفسي السفلي مثل السل الرئوي (44) والتهاب القصبات (49) سجلت من ديسمبر 2012-فبراير 2013. تراوحت أعمار المرضى من 10-98 سنة وشملت 57 ذكر و 36 أنثى، زرعت عينات البلغم على وسط سابرو يد دكستروز أكار لعزل جنس النوكارديا. عزلت 27 عزلة (5 عزلات من مرضى السل الرئوي المدخنين 10 عزلات من مرضى التهاب القصبات، 5 عزلات من مرضى التهاب القصبات المصابين بالسكر و 4 عزلات من مرضى التهاب القصبات المصابين بالسكر و 4 عزلات من مرضى التهاب القصبات المدخنين). اختبرت حساسية العزلات تجاه المضادات الحيوية، الجل المعقم لليدين و المطهرات. أظهرت النتائج إن العزلات نو حساسية عالية للاوفلوكساسين و السبروفلوكساسين و حساسية واطئة للسيفوتاكسيم و الارثرومايسي وكانت مقاومة للوكزاسلين والريفامبسين. أظهرت العزلات حساسية تجاه 3 أنواع من المطهرات.