Delivery of proteins Approaches for rate-control

(Approaches for rate-controlled parenteral delivery systems)

1

Approaches for rate-controlled delivery

 Rate control can be achieved by several different technologies similar to those used for conventional drugs.

Rate control through open loop type approach

- Continuous infusion with pumps: mechanically or osmotically driven input: constant/pulsatile/wave form
- Implants: biodegradable polymers, lipids
- Input: limited control

Rate control through closed loop approach/feed back system

- Biosensor-pump combination
- Self regulating system
- Encapsulated secretory cells

Table 9 Controlled release systems for parenteral delivery.

Mechanical Pumps:

- Continuous infusion, open loop, available at different sizes, prices, portable or not, inside/outside the body, used in hospitals.
- As ideal pump properties, are:
- 1) It must deliver the drug at the prescribed rate (s) for extended period of time.
- 2) I must be safe.
- 3) It must be convenient (small size, easy, durable).

3

Osmotically driven systems:

- As example, osmotic mini-pump, which is S.C implant with continuous, constant infusion over a prolonged periods of time.
- The rate determining process is the influx of water through the rigid, semi-permeable external membrane.
- Then the release depend on membrane properties and osmotic pressure differences over this membrane (osmotic agent inside the pump).

Bio-degradable microspheres:

- Biodegradable polymers like PLGA (polylactic acid-polyglycolic acid can be used for enclosing certain types of proteins (like LHRH agonist =leuprolide) to be taken as implants with dose ranges 1-6 months.
- As requirement of this system, we need:
- 1) Highly potent drugs (low dose)
- 2) Sustained presence in the body
- 3) No adverse reaction at the administration site.

Biosensor-pump combinations:

- They consist of:
- 1) a biosensor.
- an algorithm (calculate the required input rate).
- 3) A pump system (administer the drug at the required rate over prolonged periods of time).

7

Self-regulating systems:

- The drug release is controlled by stimuli in the body.
- Two approaches for controlled drug release are being followed:
- Competitive desorption
- reaction (depend on pH drop)
 When glucose is converted to
 Gluconic acid in presence of
 Glucose oxidase, this induces
 Changes in acid-sensitive
 Delivery devices.

Figure 23 Schematic design of the Con A immobilized bead/

Microencapsulated secretory cells

- Like implantation of Langerhans cells in diabetics to restore their insulin production through biofeedback.
- They should be protected from the body environment (no rejection).

9

Site-specific delivery (Targeting) of protein drugs

- It is used
- 1) For decrease degradation in body organ other than the site of action
- More localization in the target organ and less nontarget organs distribution
- Components of targeted drug delivery (carrier based) are:
 - 1. An active moiety

For: therapeutic effect

2. A carrier

For: (metabolic) protection, changing the disposition of the drug

3. A homing device

For: specificity, selection of the assigned target site

- Drugs with high total clearance are good candidates for targeted delivery.
- Response sites with a relatively small blood flow require carrier-mediated transport.
- Increases in the rate of elimination of free drug from either central or response compartments tend to increase the need for targeted drug delivery; this also implies a higher input rate of the drug-carrier conjugate to maintain the therapeutic effect.
- For maximizing the targeting effect, the release of drug from the carrier should be restricted to the response compartment.

Table 12 Pharmacokinetic considerations related to protein targeting.

11

Targeting can be classified into:

- Passive: use of the natural disposition pattern of the carrier system as in macrophages action toward certain particulate carriers circulating in the blood and then accumulate in the liver and spleen.
- 2) Active: change the natural disposition of the carrier by some types of homing device or homing principle to select one particular tissue or cell type.

Factors affecting protein targeting

- The physicochemical properties of carrier (its charge, mol.wt./ size, surface hydrophobicity and presence of ligands for interaction with surface receptors.
- The nature of endothelial barrier, healthy or non (inflamed, necrotic or tumorous)

13

Types of carriers for targeting

- Soluble carrier systems: ex. MAb (monoclonal antibodies), Bispecific antibodies, immuno-conjugates
- Colloidal particulate carrier systems: Liposomes, biodegradable nanoparticles, and microspheres

