Heart failure

- Heart failure (cardiac failure) is not a disease but a syndrome, with many possible aetiologies and a complex pathogenesis, yet it may be simply defined as the failure of the heart to meet the normal perfusion demands of the body.
- The cardiac failure syndrome may also involve peripheral organ damage not directly caused by reduced blood supply, especially in skeletal muscle.
- Most cases of heart failure would be classified as 'chronic compensated low-output left ventricular systolic failure'.

- The clinical features of left and right failure differ in certain crucial aspects, but many patients, especially the elderly, present with bilateral failure.
- The distinction between acute and chronic is important for management.
- The causes of heart failure may be considered in two broad groups:
- 1. Pump failure, with primary reduction in myocardial contractility.
- 2. Overloading, with either excessive afterload (pressure overload) or excessive preload(volume overload), which arise outside the heart and reduce contractility secondarily.

Term	Comment/Typical cause
Acute	Sudden onset (e.g. myocardial infarction)
Chronic	Gradual onset, usually progressive course (e.g. valve disease)
Right	Lung disease (cor pulmonale)
Left	Untreated essential hypertension
Bilateral	Almost any cause (usually chronic)
Ventricular	Failure of ventricle(s) only (the usual form)
Atrial	Failure of atria only (uncommon)
Low output	Reduced contractility – most causes (usual form)
High output	Anaemia, thyrotoxicosis – due to excessive cardiac drive
Systolic	Reduced contractility → impaired emptying (usual variety)
Diastolic	Reduced ventricular compliance → impaired filling (less common)
Compensated	Compensation prevents symptoms at rest but cardiac reserve diminished
Decompensated	Cardiac reserve exhausted
Congestive (CHF, CCF)	Imprecise traditional term describing generalized oedema; usually implies
	bilateral ventricular failure
Cardiogenic shock	Acute severe decompensation: very low BP and CO; poor tissue perfusion
LVF/RVF	Left/right ventricular failure

- The cardiomyopathies are a miscellaneous group in which diffuse damage occurs throughout the myocardium.
- They are either idiopathic or secondary to conditions such as infection, toxins (e.g. alcohol), inflammation or autoimmune disease.
- In dilated cardiomyopathy the myocardium becomes thin, weak and excessively enlarged, with a raised EDV and a low ejection fraction.
- This may arise as a consequence of, for example, infection, thyroid disease or alcohol abuse.

- In hypertrophic cardiomyopathy there is excessive thickening of the myocardium, leading to poor ventricular filling and obstructed ejection, particularly due to structural distortion around the valves, whereas in restrictive cardiomyopathy there is increased ventricular stiffness but little hypertrophy.
- Causes of diastolic failure include patchy ischaemic or senile fibrosis, restrictive cardiomyopathy and hypertrophic cardiomyopathy (e.g. owing to untreated hypertension).

Haemodynamic defect	Cause	Side affected ^(a)	Acute or chronic
Pump failure			
Systolic failure	Ischaemic heart disease	L usually	Acute or chronic
,	Cardiomyopathy	$L\pmR$	Chronic
	Arrhythmias	L + R	Acute, chronic
	Infection, inflammation, alcohol	L + R	Acute, chronic
	Systemic disease (e.g. amyloidosis)	L + R	Chronic
	Diffuse fibrosis (senile, ischaemic)	L + R	Chronic
Diastolic failure	Ischaemia, cardiomyopathy, fibrosis	L + R	Chronic
Excessive afterload	Hypertension – systemic	L	Chronic
	– pulmonary (COPD)	R	Chronic
	Valve stenosis	L or R	Chronic
Excessive preload			
Obligatory	Vasodilatation: beri-beri, septicaemia	L + R	Chronic
Hypervolaemia	Fluid retention, e.g. renal failure, aldosteronism		
	Excess IV infusion	R	Usually chronic
	Polycythaemia		·
Excessive demand	Regurgitation: valve incompetence	R or L	Chronic
	Hyperdynamic: anaemia, thyrotoxicosis	R	Chronic

- The maladaptive changes in ventricular shape caused by dilatation and hypertrophy are termed remodelling, especially when they follow MI. Angiotensin may contribute to this process.
- Investigations are used in heart failure to confirm the diagnosis and exclude other possibile diagnoses, to determine the cause and any exacerbating or precipitating factors, to grade the extent of dysfunction, and to monitor the progress of treatment.

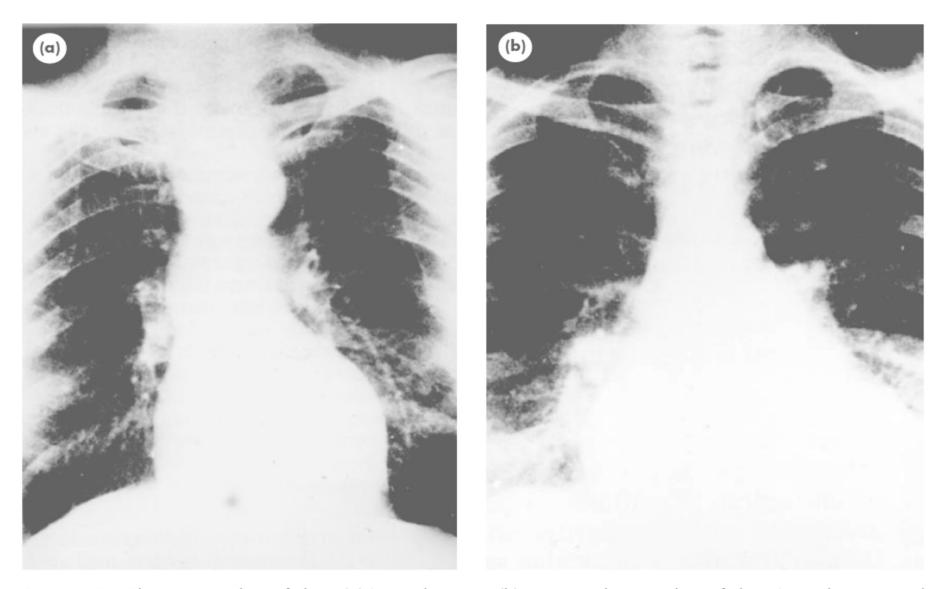
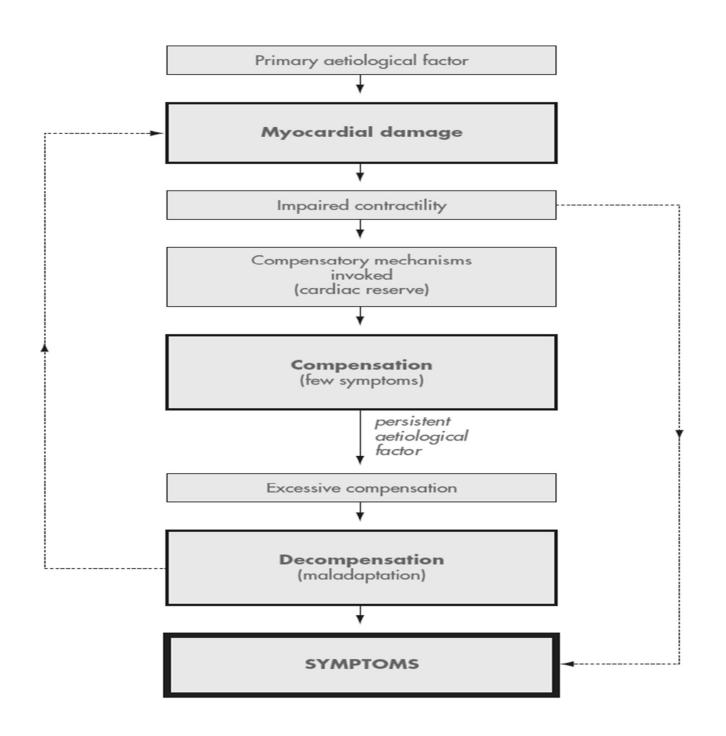
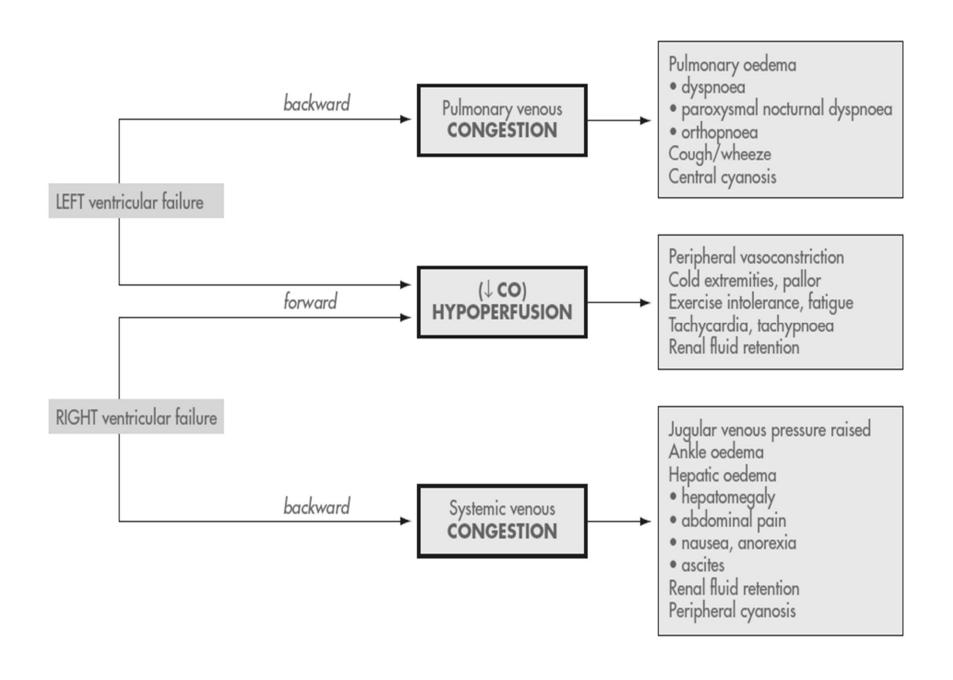




Figure 4.12 Chest X-ray in heart failure. (a) Normal pattern. (b) Patient with severe heart failure. Note the increased width of the heart shadow indicating cardiac enlargement, and the diffuse shadowing at the lung bases indicating pulmonary oedema.

Class I. Asymptomatic. No symptoms at ordinary physical activity (EF 40–50%).

Class II. Mild. Breathlessness and fatigue evident on strenuous exertion (EF 35–40%).

Class III. Moderate. Breathlessness and fatigue evident on moderate exertion (EF 30–35%).

Class IV. Severe. Breathlessness at rest (EF 30%).

 The management of heart failure involves correcting the consequences of low cardiac output and congestion, and addressing the various maladaptive pathophysiological responses that have complicated the clinical picture.

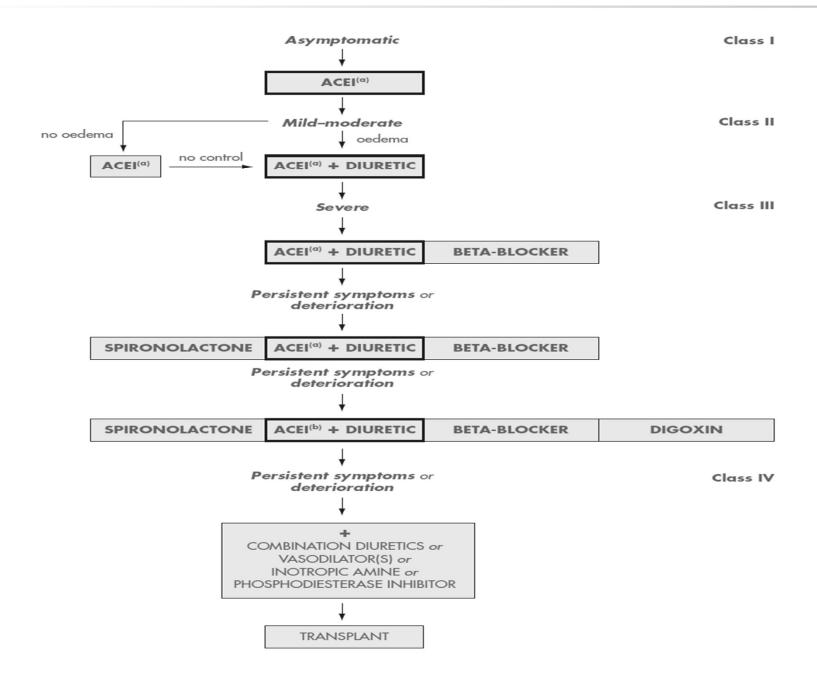

- Rather than attempting to force the heart to maintain an unrealistic output while impaired and under maximal physiological stimulation, current practice favours two alternative strategies:
- 1. Reduce the load on the heart to match its reduced pumping ability.
- **2.** Limit the counterproductive compensatory mechanisms.

Table 4.7 Predominant vascular sites of action of vasodilators used in heart failure

Arterioles	Arterioles and veins	Veins
Hydralazine CCBs	ACEIs, ARAs Alpha-adrenergic blockers	Nitrates
Beta ₂ -adrenergic agonists Dopaminergic agonists	Thiazide/loop diuretics Nitroprusside	

Table 4.8 Actions of digoxin and other cardiac glycosides

Pharmacological action	Effect on cardiovascular function	Site or mode of action
Positive inotropic	↑ Contractility	↓ Na/K-ATPase in myocyte
Negative chronotropic	↓ Conduction velocity	Direct (AV node, etc.)
	↓ Heart rate	Parasympathetic activity (vagus)
Reduced sympathetic activity (↓ noradrenaline).	↓ Excessive myocardial stimulation	Restored baroreceptor sensitivity
	Peripheral vasodilatation	 ↓ central sympathetic activity ↓ noradrenaline (norepinephrine) level
Reduced renin secretion → angiotensin ↓	↓ Fluid retention	Kidney (juxtaglomerular apparatus)
·	↓ Peripheral vasoconstriction	 ↓ sympathetic stimulation? ↓ Na/K-ATPase reduces renin release?

Diastolic failure

 This form of heart failure is especially difficult to treat, and there is as yet no reliable trial evidence.

- Efforts to increase diastolic time with cardiodepressants such as beta-blockers, or with CCBs such as verapamil, may be tried.
- Drugs that reduce preload (and hence diastolic filling) need to be used with great caution: this includes nitrates and diuretics.

Hypertension:

• Hypertension is defined by persistent elevation of arterial blood pressure (BP).

 Patients with diastolic blood pressure (DBP) values <90 mm Hg and systolic blood pressure (SBP) values ≥140 mm Hg have isolated systolic hypertension.

TABLE 10-1 Classification of Blood Pressure in Adults

Classification	Systolic (mm Hg	Systolic (mm Hg)		
Normal	<120	and	<80	
Prehypertension	120-139	00	80-89	
Stage 1 hypertension	140-159	70	90-99	
Stage 2 hypertension	≥160	Or	≥100	

- Multiple factors may contribute to the development of primary hypertension, including:
- ✓ Humoral abnormalities involving the renin-angiotensin-aldosterone system, natriuretic hormone, or hyperinsulinemia;
- ✓ A pathologic disturbance in the CNS, autonomic nerve fibers, adrenergic receptors, or baroreceptors;
- ✓ Abnormalities in either the renal or tissue autoregulatory processes for sodium excretion, plasma volume, and arteriolar constriction;
- ✓ A deficiency in the local synthesis of vasodilating substances in the vascular endothelium, such as prostacyclin, bradykinin, and nitric oxide, or an increase in production of vasoconstricting substances such as angiotensin II and endothelin I;
- ✓ A high sodium intake and increased circulating natriuretic hormone inhibition of intracellular sodium transport, resulting in increased vascular reactivity and a rise in BP; and
- ✓ Increased intracellular concentration of calcium, leading to altered vascular smooth muscle function and increased peripheral vascular resistance.

 Patients with uncomplicated primary hypertension are usually asymptomatic initially.

 Patients with secondary hypertension may complain of symptoms suggestive of the underlying disorder.

 Hypertension is called malignant or accelerated (terms not strictly synonymous but often used so) when the DBP is above 120 mmHg and usually rising rapidly.

Table 4.12 Risk factors and aetiological influences in hypertension		
Risk factor or aetiological influence	Possible rationale and comment	
Major		
Family history	Inherited tendency – probably polygenic	
Dietary Na high	Fluid retention; vascular wall oedema; ion pump defect (p. 214)	
Obesity	Possible artefact of measurement (problem with arm cuff)?	
	Greater perfusion demands of increased body mass	
	Reducing weight can reverse borderline HPT	
Alcohol	Unknown mechanism; possibly 30% of HPT related to alcohol abuse	
Sedentary life	Unknown mechanism; regular exercise lowers BP	
Renal disease	Overt or occult renal disease often implicated: cause or effect?	
Minor		
Age	See text	
Stress or type A personality	Overactive sympathetic nervous system → vasoconstriction and/or raised Difficult to quantify; effect may have been exaggerated	
Dietary		
Ca, K, Mg↓	Some evidence, especially for K	
Saturated fat ↑	May induce vasoconstriction via endothelial interactions	
Animal products	Vegetarians may have lower BP	
Glucose intolerance	Complex interaction between insulin resistance, hyperlipidaemia and HI	
Race	Increased average BP in urban Blacks: ↑ response to stress or dietary :	
Smoking	No sustained effect on BP itself but greatly exacerbates atherosclerotic complications	

Table 4.13 Causes of secondary hypertension

Possible cause or underlying disease	Raised haemodynamic pard Peripheral resistance	ameter Cardiac output
Renal/endocrine Glomerular damage → ↓ GFR → fluid retention Increased renin secretion → angiotensin ↑ (e.g. renal artery disease)	- +	+
Endocrine Phaeochromocytoma → adrenaline (epinephrine) – very rare Cushing's disease/Conn's syndrome → aldosterone ↑	+	+
Vasomotor Increased intracranial pressure (e.g. trauma, tumour)	+	_
Anatomic Aortic coarctation (constriction)	+	_
latrogenic, e.g.: NSAIDs, corticosteroids, oral contraceptives, sympathomimetics, MAOIs	+	+

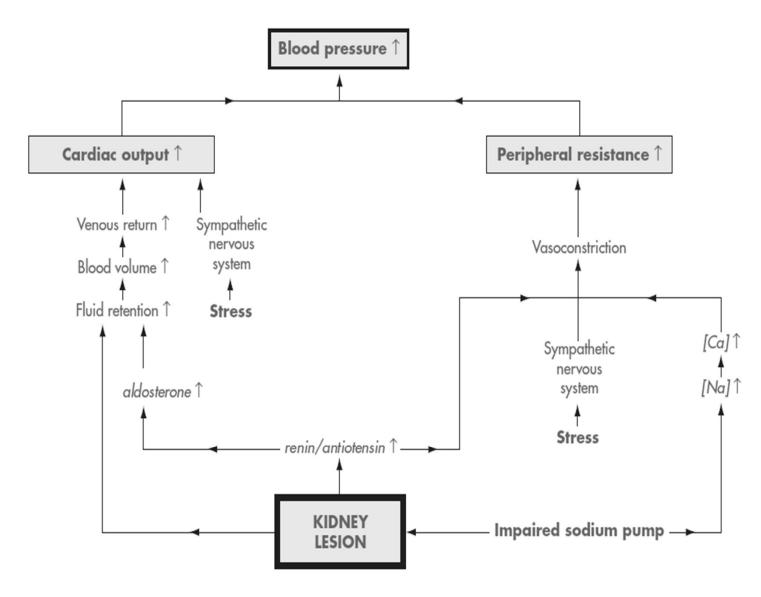


Figure 4.20 Possible pathways in the pathogenesis of hypertension. [Ca], intracellular calcium concentration; [Na], intracellular sodium concentration.

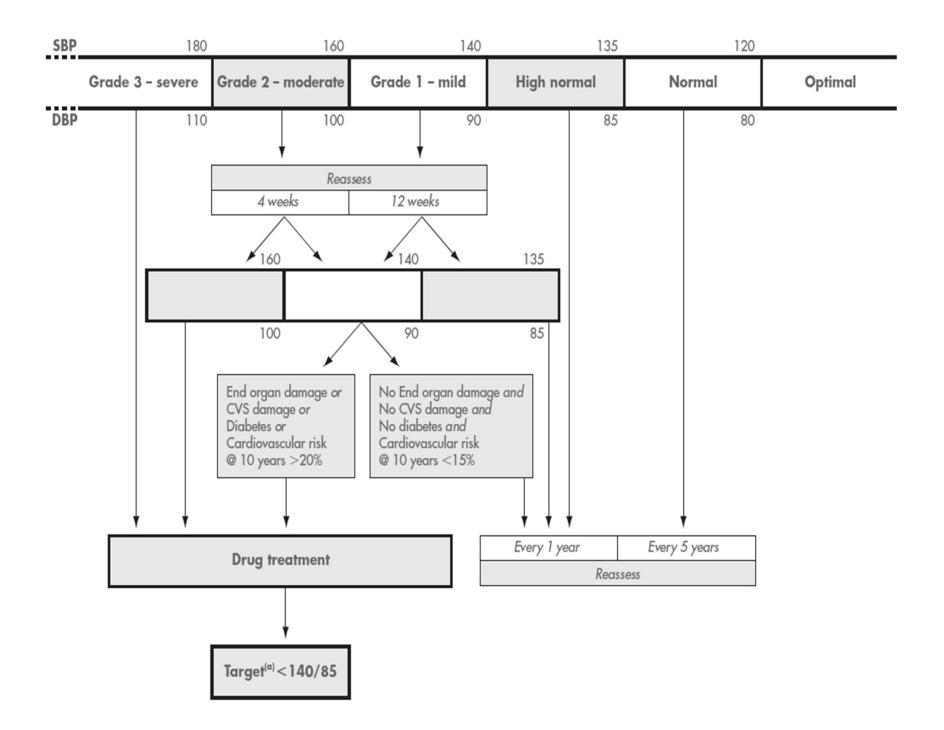
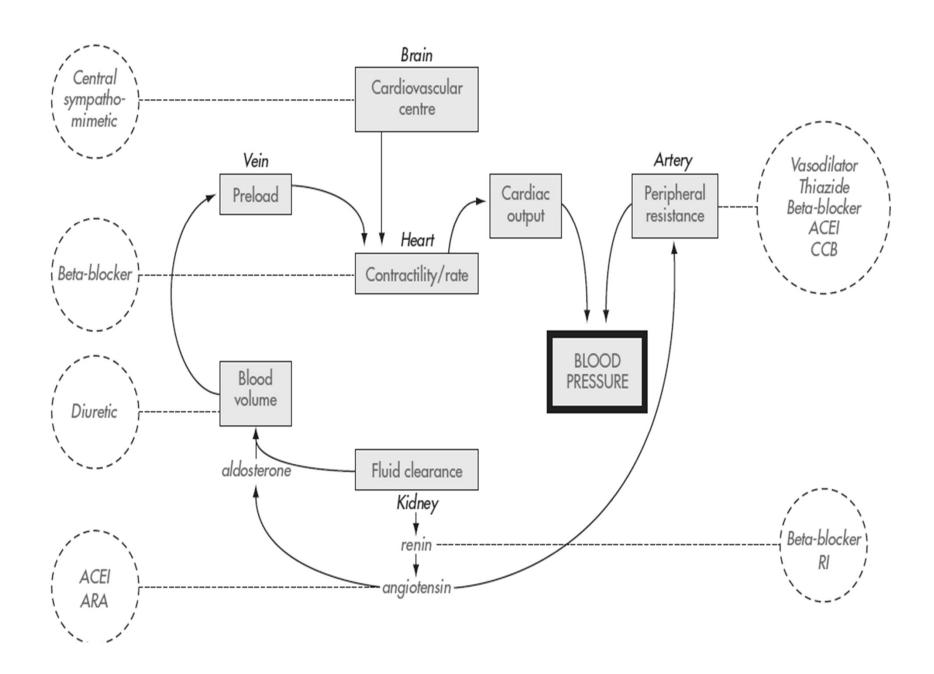

Table 4.17 Complications of untreated hypertension			
Pathology	Pathogenesis	Clinical consequence	
Direct effects ↑ Peripheral resistance Arteriosclerosis	Elevated LV afterload	LV failure Renovascular disease → renal failure Haemorrhagic stroke, multiple infarcts Dementia → hypertensive encephalopathy	
Indirect effects Atherosclerosis	Possible: ↑ fat penetration, vessel wall damage, turbulent flow	Retinal damage Ischaemic heart disease Peripheral vascular disease Renal failure Cerebrovascular disease → thrombotic stroke, multi-infarct dementia	

Table 4.18	Signs	of	high	card	diovascular	risk	in
	hypert	ensi	ve pat	ient,	indicating	need	for
	earlier	dru	g treat	ment	t in hyperte	nsion	

Evidence of established Risk factor for producing end-organ damage end-organ damage Hyperlipidaemia Retinal damage Smoking Renal impairment Diabetes mellitus Cardiac enlargement or hypertrophy Cardiac ischaemia Family history of CVD (ECG) Older patient Angina/past MI Past stroke Male sex (younger patient) Peripheral vascular disease

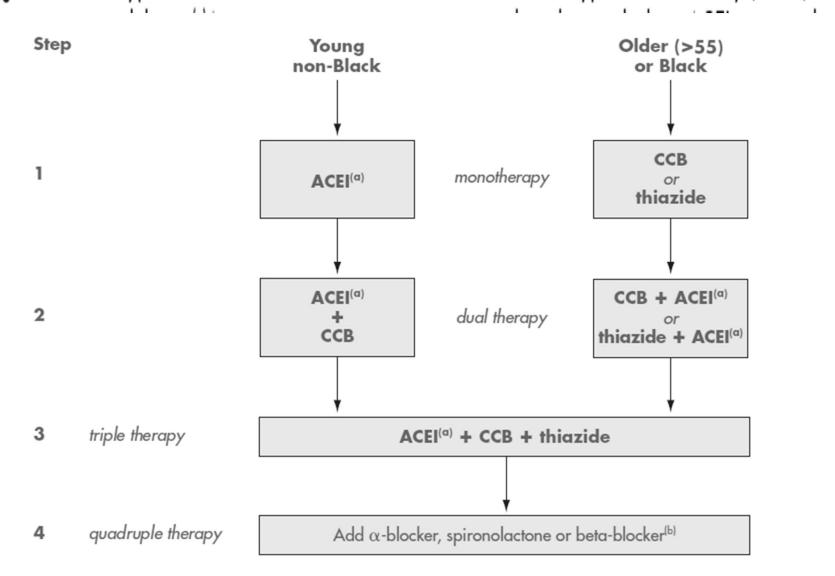
Management:


- In addition to the level of the blood pressure itself, the patient's age and cardiovascular risk must be taken into account in balancing the likely benefits of intervention against the possible harms and reduced quality of life from lifelong drug therapy.
- Very severe hypertension (i.e. above 210/120 mmHg) represents a medical emergency, with the risk of encephalopathy, renal damage or haemorrhagic stroke.
- Nevertheless, this is not corrected too aggressively because a rapid fall in blood pressure can compromise cerebral perfusion.
- Parenteral therapy is generally avoided, a smooth fall over a number of hours being preferred, and this can be attained effectively with oral therapy (e.g. ACEI, hydralazine, labetalol). IV

Principles of drug therapy in hypertension

- As few drugs as possible
- As few daily doses as possible
- Start with most suitable initial drug^(a)
- Increase the dose gradually until adequate effect achieved
- If primary failure, substitute another suitable drug from different group
- If effectiveness declines, add another agent rather than substitute
- Combine agents acting by different mechanisms
- Combine agents tending to reduce each other's adverse actions
- Monitor adverse reactions and patient compliance regularly

Proposed targets and haemodynamic actions of antihypertensive drugs.


Antihypertensive drugs classified haemodynamically

Cardiac output reduced	Peripheral resistance reduced	Examples
Beta-blocker	Beta-blocker	Atenolol
Diuretics	Thiazide diuretic	Bendroflumethiazide
ACEI	ACEI	Captopril, enalapril
ARA	ARA	Losartan
RI	RI	Aliskiren
	CCB	Nifedipine, diltiazem
	Direct-acting vasodilator	Hydralazine, nitroprusside, minoxidil, diazoxide
	Alpha-blocker	Prazosin, doxazosin, labetalol, phentolamine
	Centrally acting sympathomimetic	Methyldopa, clonidine ^(b)
	Centrally acting selective imidazoline receptor agonist ^(a)	Clonidine(b), moxonidine
	Adrenergic neurone blocker ^(a,b)	Guanethidine

Specific indications, precautions and contra-indications of antihypertensive drugs

Situation	Drugs to avoid/caution	Specific alternatives or recommendations ^(a)
Elderly	Sympatholytic (postural effect)	Thiazide, methyldopa
Young male	Thiazide, beta-blocker	ACEI(b), CCB
Black ethnic group	Beta-blocker, ACEI	_
Peripheral vascular disease	Beta-blocker, ? ACEI	Vasodilator
Vascular disease in elderly	ACEI	_
Angina	Vasodilator	Beta-blocker, CCB
Post-MI	_	Beta-blocker, ACEI
Heart failure, LVD	CCB esp. verapamil, diltiazem	Thiazide, ACEI, ? beta-blocker
Heart block	Beta-blocker, CCB	_
Hyperlipidaemia	Beta-blocker, thiazide(c)	ACEI, CCB, selective alpha-blocker
Diabetes (especially type 1)	Thiazide ^(c) , beta-blocker ^(d)	ACEI, selective alpha-blocker
Obstructive pulmonary disease	Beta-blocker ^(d)	_
Pregnancy	Thiazide, ACEI	Methyldopa, labetalol, furosemide
Hepatic impairment	CCB	Methyldopa
Renal impairment:		
– early	Thiazide	ACEI
- severe	ACEI	Furosemide, beta-blocker
Diabetic nephropathy		ACEI
Renal artery stenosis	ACEI	_
High renin	_	ACEI
Thyrotoxicosis	_	Beta-blocker
Depression	Lipophilic beta-blockers, methyldopa, clonidine	_
Gout, hypokalaemia	Thiazide	_
Prostatic hypertrophy	-	Alpha-blocker

Drug selection in hypertension – recommendations of NICE and British Hypertension Society (2006).

Potential interactions with antihypertensive therapy^(a)

Drugs that elevate blood pressure

Vasoconstrictor sympathomimetics Oral decongestants (e.g. phenylephrine, xylometazoline),

bronchodilators especially non-specific(b), amphetamines

Drugs causing fluid retention Corticosteroids, oral contraceptives, NSAIDs

Drugs that lower blood pressure

CNS depressants Tranquillizers, alcohol

Vasodilators Nitrates, specific bronchodilators(b)

Specific interactions

Beta-blockers Verapamil, diltiazem

→ cardiac depression, failure

Alpha-blockers Beta-blockers, diuretics

→ exaggerated first-dose hypotension

Potassium-sparing diuretics, potassium supplements

→ hyperkalaemia

ACEIs