CH 7: pharmacokinetic of oral absorption:

Learning Questions

1. Plasma samples from a patient were collected after an oral bolus dose of 10 mg of a new benzodiazepine solution as follows:

Time (hr)	Concentration (ng/mL)
0.25	2.85
0.50	5.43
0.75	7.75
1.00	9.84
2.00	16.20
4.00	22.15
6.00	23.01
10.00	19.09
14.00	13.90
20.00	7.97

From the data above:

a. Determine the elimination constant of the drug.

b. Determine k_a by feathering.

c. Determine the equation that describes the plasma drug concentration of the new benzodiazepine.

2. Assuming that the drug in Question 1 is 80% absorbed, find (**a**) the absorption constant, k_a ; (**b**) the elimination half-life, $t_{1/2}$; (**c**) the t_{max} , or time of peak drug concentration; and (**d**) the volume of distribution of the patient.

3. Contrast the percent of drug-unabsorbed methods for the determination of rate constant for absorption, k_a , in terms of (a) pharmacokinetic model, (b) route of drug administration, and (c) possible sources of error.

4. What is the error inherent in the measurement of k_a for an orally administered drug that follows a two-compartment model when a one-compartment model is assumed in the calculation?

5. What are the main pharmacokinetic parameters that influence (**a**) time for peak drug concentration and (**b**) peak drug concentration?

6. Name a method of drug administration that will provide a zero-order input.

7. A single oral dose (100 mg) of an antibiotic was given to an adult male patient (43 years, 72 kg). From the literature, the pharmacokinetics of this drug fit a one-compartment open model. The equation that best fits the pharmacokinetics of the drug is

From the equation above, calculate (a) t_{max} , (b) C_{max} , and (c) $t_{1/2}$ for the drug in this patient.

Assume C_p is in g/mL and the first-order rate constants are in hours⁻¹.

8. Two drugs, A and B, have the following pharmacokinetic parameters after a single oral dose of 500 mg:

Drug	$k_{\mathrm{a}}(\mathrm{hr}^{-1})$	k (hr ⁻¹)	V _D (mL)
Α	1.0	0.2	10,000
В	0.2	1.0	20,000

Both drugs follow a one-compartment pharmacokinetic model and are 100% bioavailable.

a. Calculate the t_{max} for each drug.

b. Calculate the C_{max} for each drug.

9. The bioavailability of phenylpropanolamine hydrochloride was studied in 24 adult male subjects. The following data represent the mean blood phenylpropanolamine hydrochloride concentrations (ng/mL) after the oral administration of a single 25-mg dose of phenylpropanolamine hydrochloride solution.

Time (hr)	Concentration (ng/mL)	Time (hr)	Concentration (ng/mL)
0	0	3	62.98
0.25	51.33	4	52.32
0.5	74.05	6	36.08
0.75	82.91	8	24.88
1.0	85.11	12	11.83
1.5	81.76	18	3.88
2	75.51	24	1.27

a. From the data, obtain the rate constant for absorption, k_a , and the rate constant for elimination, k, by the method of residuals.

b. Is it reasonable to assume that $k_a > k$ for a drug in a solution? How would you determine unequivocally which rate constant represents the elimination constant *k*? **c.** From the data, which method, Wagner–Nelson or Loo–Riegelman, would be more appropriate to determine the order of the rate constant for absorption?

d. From your values, calculate the theoretical t_{max} . How does your value relate to the observed t_{max} obtained from the subjects?

e. Would you consider the pharmacokinetics of phenylpropanolamine HCl to follow a one-compartment model? Why?