Analytical Chemistry Lecture I by/ Dr. Ekhlas Q. J.

40

30

20

10

Equilibrium Constants

Self-ionization of Water

- concentrations or molarities can be written with brackets
- For example:

concentration of A = [A] = 2.0 M

- K_w:
 - the ionization constant of water
 - the product of [OH⁻] and [H⁺]
- at 25°C

$K_w = [H_3O^+][OH^-] = 1.0 \times 10^{-14}$

K

- subject to the same restriction as any other equilibrium constant (T, P)
- Will acidic solutions have more H⁺ or OH⁻?
 - [H⁺]>[OH⁻]: acidic
 - [OH⁻]>[H⁺]: basic
 - $[OH^{-}] = [H^{+}]$: neutral
- can find the [OH⁻] or [H⁺] from a mole ratio of the dissociation or reaction in the water of the acid or base

Water as an Acid and a Base Autoionization of water:

$$\frac{[H_3O^+][OH^-]}{[H_2O(\hbar)]^2} = \frac{2 H_2O(\hbar) \iff H_3O^+(aq) + OH^-(aq)}{K_w = [H_3O^+][OH^-] = [H^+][OH^-]}$$
$$K_w = 1.0 \times 10^{-14} \text{ (at 25°C)}$$

In pure water $[H^+] = [OH^-]$

$$K_{a}/K_{b}/K_{w} \qquad NH_{4}^{+} \rightleftharpoons H^{+} + NH_{3}$$
$$K_{a} = \frac{[H^{+}][NH_{3}]}{[NH_{4}^{+}]}$$

$$NH_3 + H_2O \implies OH^- + NH_4^+$$

$$K_{b} = \frac{[OH^{-}][NH_{4}^{+}]}{[NH_{3}](1)}$$

$$H_2O \implies OH^- + H^+$$

$$K_{w} = K_{a}K_{b} = \frac{[OH^{-}][H^{+}]}{(1)}$$

pH Calculations

Strong Electrolyte

- Acids, HNO₃, HCl, H₂SO₄
- Bases , KOH, NaOH, Ba(OH)₂
- Salts, KCl, AlCl₃, BaCl₂

Weak Electrolyte

- Acid, acetic acid, HCOOH, HCN
- Base, NH₄OH

- Acid-base theories:-
- 1) Arrhenius Theory (H⁺ and OH⁻):-
- Acid:-any substance that ionizes (partially or completely) in water to give hydrogen ion (which associate with the solvent to give hydronium ion H_3O^+):
- $HA + H_2O \leftrightarrow H_3O^+ + A^-$
- Base:-any substance that ionizes in water to give hydroxyl ions.
 such as metal hydroxides (e.g. NaOH) dissociate as
 M(OH)n ↔n M⁺ + n OH⁻
- NaOH \leftrightarrow Na⁺ + OH⁻

2) Bronsted-Lowry Theory (taking and giving protons, H^+):-Acid:-any substance that can donate a proton. Base:-any substance that can accept a proton. Thus, we can write a half reaction: Acid = H^+ + Base 3) Lewis Theory (taking and giving electrons):Acid:-a substance that can accept an electron pair.
Base:-a substance that can donate an electron pair.
H₂O + H⁺ ↔ H₂O:H⁺ (H₃O⁺)
HO:⁻ + H⁺ ↔ H:OH

What is an ACID?

- pH less than 7
- Neutralizes bases

- Forms H⁺ ions in solution
 - It turns Litmus to Red.

What is a BASE?

- pH greater than 7
- Feels slippery
- Bitter Taste
- Usually forms
 OH⁻ ions in solution
- It turns Red Litmus Blue.

What is a BASE?

• pH greater than 7

Strong and weak acids and bases

- Strong acid fully dissociates in water, i.e. almost every molecule breaks up to form H⁺ ions
- Some strong acids are...HCI, H₂SO₄, HNO₃
- Weak acid partially dissociates in water
- Some weak acids are...carboxylic acids such as CH₃COOH, C₂H₅COOH
- Strong base fully dissociates in water, i.e. almost every molecule breaks up to form OH⁻ ions
- Some strong bases are....NaOH, compounds which contain OH⁻ ions or O²⁻ ions
- Weak base partially dissociates in water
- Some weak bases...nitrogen-containing compounds, such as NH₃
- Strengths can be determined by the acid or base dissociation constant

pН

- *pH* is a scale in which the concentration of hydronium ions in solution is expressed as a number ranging from 0 to 14.
- Instead of referring to a scale of 1 to 10⁻¹⁴, the pH scale is much easier to use.
- pH is the negative of the exponent of the hydronium concentration.

The pH Scale

$pH = -log[H^+]$

 $OT \\ pH = -log[H_3O^+]$

Or $[H_3O^+] = 10^{-pH}$

pH Meter: Laboratory Measurement of pH

pH paper

• pH paper changes color to indicate a specific pH value.

Determining the Basicity of a Solution pOH

- Since acids and bases are opposites, pH and pOH are opposites!
- pOH does not really exist, but it is useful for changing bases to pH
- pOH looks at the perspective of a base:
 pOH = log [OH⁻]
- Since pH and pOH are on opposite ends:
 pH + pOH = 14

pH Equations **You must know the following equations,** which are all based on the ionization of water at 25^o C!

 \rightleftharpoons H⁺ **H**₂**O** OH-+ 1.00 x 10⁻¹⁴ Kw $[H^+][OH^-] =$ = $pOH = -Log[OH^-]$ pH $-Log[H^+]$ = **10**-pOH **10**-pH **[OH-]** [H⁺] pKw = 14.000 **pOH** = pH +

- pH > 7: base
- pH = 7: neutral

1.What is the pH of a solution that has a hydronium ion concentration of 6.5 x $10^{-5}M$?

2. What is the hydronium ion concentration of a solution with pH 3.65?

1.
$$pH = -log[H_3O^+]$$

 $pH = -log[6.54 \times 10^{-5}]$
 $pH = 4.19$
2. $[H_3O^+] = 10^{-pH}$
 $[H_3O^+] = 10^{-3.65}$
 $[H_3O^+] = 2.2 \times 10^{-4}$

1. What is the pOH of a solution that has a hydroxide ion concentration of 4.3 x $10^{-2}M$?

2. What is the hydroxide ion concentration of a solution with pOH 8.35?

1.

2.

Example :-A 1.0×10⁻3 M solution of HCl prepared. What is the hydroxyl ion concentration [OH⁻] ?

```
Kw=[H^+][OH^-]=1.0\times10^{-14}1.0\times10^{-3}\times[OH^-]=1.0\times10^{-14}
```

```
[OH^{-}]=1.0\times10^{-11}\,M
```

```
e.g., Ba(OH)2 \rightarrow Ba^{2+} + 2OH^{-}
```

```
Given 0.1 MBa(OH)2, the pOH is -log(0.2) = 0.7
```

Example :- Calculate the pH and pOH of a 2×10⁻³M HCl ?

$$[H+]= 2 \times 10^{-3}$$

pH= $-\log[H^+] = -\log(2.0 \times 10^{-3}) = 3 - \log 2.0 = 2.70$
pKw = pH + pOH = 14
pOH = 14-pH = 14 - 2.70 = 11.3

Example :-Calculate the pOH and pH of a 5×10^{-2} M NaOH ? [OH–]= 5×10^{-2} M pOH = $-\log[OH^{-}] = -\log(5 \times 10^{-2}) = 2 - \log 5 = 2 - 0.70 = 1.30$ pH + pOH = 14 pH=14-pOH = 14-1.30= 12.70

Example

• A shampoo has a pH of 2.53. Calculate the pOH, [H⁺] and [OH⁻]. Is it acidic, basic, or neutral?

$$pOH = 14.00 - pH = 14.00 - 2.53 = 11.47$$

 $[H^+] = 10^{-2.53} = 0.0029M$
 $[OH^-] = 10^{-11.47} = 3.42 \times 10^{-12} M$
 $pH < 7$ so acidic

e.g., An aqueous solution of a strong base has pH 12.24 at 25°C. Calculate the concentration of base in the solution (a) if the base is NaOH and (b) if the base is Ba(OH)2.

Answer:

pH = 12.24 means that pOH = 14 - 12.24 = 1.76

Therefore $[OH^{-}] = 10^{-1.76} = 0.0174$ With NaOH, we must have [NaOH] = 0.017 M

With Ba(OH)2, we have $[Ba(OH)2] = (0.017 / 2) = 8.7 \times 10^{-3} M$

Strong acids and strong alkalis (either in excess)

- 1. Calculate the initial number of moles of H⁺ and OH⁻ ions in the solutions
- 2. As H⁺ and OH⁻ ions react in a 1:1 ratio; calculate unreacted moles species in excess
- 3. Calculate the volume of solution by adding the two original volumes
- 5. Divide moles by volume to find concentration of excess the ion in M
- 6. Convert concentration to pH

If the excess is H^+ $pH = -log[H^+]$ If the excess is $OH^ pOH = -log[OH^-]$ then pH + pOH = 14or use $K_w = [H^+][OH^-] = 1 \times 10^{-14} \text{ at } 25^{\circ}\text{C}$ therefore $[H^+] = K_w / [OH^-]$ then $pH = -log[H^+]$

Strong acids and alkalis (either in excess)

Calculate the pH of a mixture of 25cm³ of 0.1M NaOH is added to 20cm³ of 0.1M HC/

1. Calculate the number of moles of H⁺ and OH⁻ ions present

2. As the ions react in a 1:1 ratio, calculate the unreacted moles of the excess species

The reaction taking place is... $HCI + NaOH \longrightarrow NaCI + H_2O$ or in its ionic form $H^+ + OH^- \longrightarrow H_2O$ (1:1 molar ratio)

2.0 x 10⁻³ moles of H⁺ will react with the same number of moles of OH⁻ this leaves 2.5 x 10⁻³ - 2.0 x 10⁻³ = 5.0×10^{-4} moles of OH⁻ in excess

Strong acids and alkalis (either in excess)

Calculate the pH of a mixture of 25cm³ of 0.1M NaOH is added to 20cm³ of 0.1M HC/

- 1. Calculate the number of moles of H⁺ and OH⁻ ions present
- 2. As the ions react in a 1:1 ratio, calculate the unreacted moles of the excess species
- 3. Calculate the volume of the solution by adding the two individual volumes
- 4. Convert volume to L (divide cm³ by 1000) the volume of the solution is 25 + 20 = 45cm³ there are 1000 cm³ in 1L volume = 45/1000 = 0.045L

Strong acids and alkalis (either in excess)

Calculate the pH of a mixture of 25cm³ of 0.1M NaOH is added to 20cm³ of 0.1M HC*I* **5.** Divide moles by volume to find concentration of excess ion in mol L⁻¹

 $[OH^{-}] = 5.0 \times 10^{-4} / 0.045 = 1.11 \times 10^{-2} \text{ mol } \text{L}^{-1}$

. As the excess is OH⁻ use pOH = - log[OH⁻] then pH + pOH = 14 or $K_w = [H^+][OH^-]$ so $[H^+] = K_w / [OH^-]$ [OH⁻] = 5.0 x 10⁻⁴ / 0.045 = 1.11 x 10⁻² M [H⁺] = K_w / [OH⁻] = 9.00 x 10⁻¹³ M pH = - log[H⁺] = 12.05

Example :-Calculate the pH of a solution prepared by mixing 2.0 mL of a strong acid solution (keep track of millimoles) of pH=3.0 and 3.0 mL of a strong base of pH=10.0?

 $[H^+]=1.0\times10^{-3}M$ mmol

 $H^{+}=M \times V = 1.0 \times 10^{-3} \times 2.0 = 2 \times 10^{-3} \text{ mmol}$

 $OH^{-}=M \times V = 1.0 \times 10^{-4} \times 3.0 \text{ mL} = 3.0 \times 10^{-4} \text{ mmol}$

pOH=14-pH =14-10=4.0

 $[OH-]=1.0\times10^{-4}M$ mmol

There is an excess of acid:-

mmol H⁺ =
$$2.0 \times 10^{-3} - 3.0 \times 10^{-4}$$

= 1.7×10^{-3} mmol

 $[H^+] = 1.7 \times 10^{-3} \text{ mmol} / 5\text{mL} (2+3)$ $= 3.4 \times 10^{-4} \text{M pH}$ $= -\log 3.4 \times 10^{-4}$ = 4 - 0.53= 3.47

```
Q/ Calculate the pH for the following:

a) 50 ml 0.1M HCl

b) 50 ml 0.1M HCl + 50 ml H<sub>2</sub>O

c) 50 ml 0.1M HCl + 50 ml 0.1M NaOH

d) 50 ml 0.1M HCl + 40 ml 0.1M NaOH

e) 40 ml 0.1M HCl + 50 ml 0.1M NaOH
```

```
Sol./
a) HCl \rightarrow H<sup>+</sup> + Cl<sup>-</sup>
0.1M 0.1M 0.1M
pH= -log 1×10<sup>-1</sup> = 1
```

b) M1 V1 = M2 V2 $0.1 \times 50 = M2 \times 100$ M2 = 0.05 M pH = -log 5 × 10⁻² =

c) HCl + NaOH \rightarrow NaCl + H₂O 0.1×50 0.1×50 m.mole HCl = m.mole NaOH 0.1×50 0.1×50 5 5 pH = 7 because $[OH^-] = [H^+] = \sqrt{K_w}$

```
d) HCl + NaOH \rightarrow NaCl + H<sub>2</sub>O

0.1×50 0.1×40

Molaity HCl <sub>excess</sub> = m.mole solution/volume solution

= (5-4)/90 = 1/90

pH = -log 1/90
```

```
e) HCl + NaOH \rightarrow NaCl + H<sub>2</sub>O

0.1×40 0.1×50

Molaity NaOH <sub>excess</sub> = m.mole solution/volume solution

= (5-4)/90 = 1/90

pOH = -log 1/90

pH = 14 - pOH
```