Analytical Chemistry

 Lecture I by/ Dr. Ekhlas Q. J.
Equilibrium Constants

Self-ionization of Water

- concentrations or molarities can be written with brackets
- For example:
concentration of $\mathrm{A}=[\mathrm{A}]=2.0 \mathrm{M}$
- K_{w} :
- the ionization constant of water
- the product of $\left[\mathrm{OH}^{-}\right]$and $\left[\mathrm{H}^{+}\right]$
- at $25^{\circ} \mathrm{C}$

$$
K_{w}=\left[H_{3} O^{+}\right]\left[O H^{-}\right]=1.0 \times 10^{-14}
$$

- subject to the same restriction as any other equilibrium constant (T, P)
- Will acidic solutions have more H^{+}or OH^{-}?
$-\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right]$: acidic
$-\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}^{+}\right]$: basic
$-\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]$: neutral
- can find the $\left[\mathrm{OH}^{-}\right]$or $\left[\mathrm{H}^{+}\right]$from a mole ratio of the dissociation or reaction in the water of the acid or base

Water as an Acid and a Base
Autoionization of water:
$\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{I})\right]^{2}}$

$$
\begin{aligned}
& 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
& \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
& \mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}\left(\mathrm{at} 25^{\circ} \mathrm{C}\right) \\
& \hline
\end{aligned}
$$

In pure water $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$

© 2003 Thomson-Brooks/Cole

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

$\mathrm{K}_{\mathrm{a}} / \mathrm{K}_{\mathrm{b}} / \mathrm{K}_{\mathrm{w}}$
$\mathrm{NH}_{4}{ }^{+} \leftrightharpoons \mathrm{H}^{+}+\mathrm{NH}_{3}$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}
$$

$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{OH}^{-}+\mathrm{NH}_{4}{ }^{+}$

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{NH}_{4}^{+}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

$\mathrm{K}_{\mathrm{a}} / \mathrm{K}_{\mathrm{b}} / \mathrm{K}_{\mathrm{w}}$
$\mathrm{NH}_{4}{ }^{+} \leftrightharpoons \mathrm{H}^{+}+\mathrm{NH}_{3}$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}
$$

$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{OH}^{-}+\mathrm{NH}_{4}^{+}$

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{NH}_{4}^{+}\right]}{\left[\mathrm{NH}_{3}\right](1)}
$$

$$
\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{OH}^{-}+\mathrm{H}^{+}
$$

$$
\mathrm{K}_{\mathrm{w}}=\mathrm{K}_{\mathrm{a}} \mathrm{~K}_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}^{+}\right]}{(1)}
$$

pH Calculations

Strong Electrolyte

- Acids, $\mathrm{HNO}_{3}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}$
- Bases, $\mathrm{KOH}, \mathrm{NaOH}, \mathrm{Ba}(\mathrm{OH})_{2}$
- Salts, $\mathrm{KCl}, \mathrm{AlCl}_{3}, \mathrm{BaCl}_{2}$

Weak Electrolyte

- Acid, acetic acid, $\mathrm{HCOOH}, \mathrm{HCN}$
- Base, $\mathrm{NH}_{4} \mathrm{OH}$
- Acid-base theories:-
- 1) Arrhenius Theory $\left(\mathbf{H}^{+}\right.$and $\left.\mathrm{OH}^{-}\right)$:-
- Acid:-any substance that ionizes (partially or completely) in water to give hydrogen ion (which associate with the solvent to give hydronium ion $\mathrm{H}_{3} \mathrm{O}^{+}$):
- $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$
- Base:-any substance that ionizes in water to give hydroxyl ions. such as metal hydroxides (e.g. NaOH) dissociate as $\mathrm{M}(\mathrm{OH}) \mathrm{n} \leftrightarrow \mathrm{n} \mathrm{M}^{+}+\mathrm{n} \mathrm{OH}^{-}$
- $\mathrm{NaOH} \leftrightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$

2) Bronsted-Lowry Theory (taking and giving protons, \mathbf{H}^{+}):-Acid:-any substance that can donate a proton. Base:-any substance that can accept a proton. Thus, we can write a half reaction: Acid $=\mathrm{H}^{+}+$Base

3) Lewis Theory (taking and giving electrons):-

Acid:-a substance that can accept an electron pair.
Base:-a substance that can donate an electron pair.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \leftrightarrow \mathrm{H}_{2} \mathrm{O}: \mathrm{H}^{+}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right) \\
& \mathrm{HO}:^{-}+\mathrm{H}^{+} \leftrightarrow \mathrm{H}: \mathrm{OH}
\end{aligned}
$$

What is an ACID?

- pH less than 7
- Neutralizes bases

- Forms H^{+}ions in solution
- It turns Litmus to Red.

What is a BASE?

- pH greater than 7
- Feels slippery
- Bitter Taste
- Usually forms OH^{-}ions in solution

- It turns Red Litmus Blue.

What is a BASE?

- pH greater than 7

The PH Scale

Neutral

Strong and weak acids and bases

- Strong acid - fully dissociates in water, i.e. almost every molecule breaks up to form H^{+}ions
- Some strong acids are $\ldots \mathrm{HCl}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{3}$
- Weak acid - partially dissociates in water
- Some weak acids are...carboxylic acids such as $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COOH}$
- Strong base - fully dissociates in water, i.e. almost every molecule breaks up to form OH^{-}ions
- Some strong bases are.... NaOH , compounds which contain OH^{-}ions or O^{2-} ions

Weak base - partially dissociates in water

- Some weak bases...nitrogen-containing compounds, such as NH_{3}
- Strengths can be determined by the acid or base dissociation constant

pH

pH is a scale in which the concentration of hydronium ions in solution is expressed as a number ranging from 0 to 14 .

- Instead of referring to a scale of 1 to 10^{-14}, the pH scale is much easier to use.
- pH is the negative of the exponent of the hydronium concentration.

The pH Scale

$$
\begin{gathered}
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
\text {or } \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}}
\end{gathered}
$$

pH Meter: Laboratory Measurement of pH

pH paper

- pH paper changes color to indicate a specific pH value.

Determining the Basicity of a Solution pOH

- Since acids and bases are opposites, pH and pOH are opposites!
- pOH does not really exist, but it is useful for changing bases to pH
- pOH looks at the perspective of a base: $\mathbf{p O H}=-\log \left[\mathrm{OH}^{-}\right]$
- Since pH and pOH are on opposite ends:

$$
\mathrm{pH}+\mathrm{pOH}=14
$$

You must know the following equations, which are all based on the ionization of water at $25^{\circ} \mathrm{C}$?

$$
\begin{array}{llllll}
\mathrm{H}_{2} \mathrm{O} & & \rightleftarrows \quad \mathrm{H}^{+} & + & \mathrm{OH}^{-} \\
\mathrm{Kw} & = & {\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]} & = & 1.00 \times 10^{-14} \\
\mathrm{pH} & = & -\mathrm{Log}\left[\mathrm{H}^{+}\right] & & \mathrm{pOH}= & -\mathrm{Log}\left[\mathrm{OH}^{-}\right] \\
{\left[\mathrm{H}^{+}\right]} & & =10^{-\mathrm{pH}} & & {\left[\mathrm{OH}^{-}\right]} & = \\
\mathrm{pH} & + & \mathrm{pOH}=10^{-\mathrm{pOH}} \\
& & \mathrm{pKw} & =14.000
\end{array}
$$

pH scale

- more convenient than using concentrations
- $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
- $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
- pH increases as $\left[\mathrm{H}^{+}\right]$decreases
- $\mathrm{pH}<7$: acid
- $\mathrm{pH}>7$: base
- $\mathrm{pH}=7$: neutral

1. What is the pH of a solution that has a hydronium ion concentration of $6.5 \times 10^{-5} \mathrm{M}$?
2. What is the hydronium ion concentration of a solution with pH 3.65 ?
3.

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
\mathrm{pH}=-\log \left[6.54 \times 10^{-5}\right]
$$

$$
\mathrm{pH}=4.19
$$

2.

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-3.65}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.2 \times 10^{-4}$

1. What is the pOH of a solution that has a hydroxide ion concentration of $4.3 \times 10^{-2} \mathrm{M}$?
2. What is the hydroxide ion concentration of a solution with pOH 8.35 ?
3.

$\mathrm{pOH}=-\mathrm{log}\left[\mathrm{OH}^{-}\right]$

$\mathrm{pOH}=-\log \left[4.3 \times 10^{-2}\right]$

$\mathrm{pOH}=1.37$
2.
$\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}$
$\left[\mathrm{OH}^{-}\right]=10^{-8.35}$
$\left[\mathrm{OH}^{-}\right]=4.5 \times 10^{-9}$

Example :-A $1.0 \times 10^{-3} \mathrm{M}$ solution of HCl prepared. What is the hydroxyl ion concentration $\left[\mathrm{OH}^{-}\right]$?
$\mathrm{Kw}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
$1.0 \times 10^{-3} \times\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
$\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-11} \mathrm{M}$
e.g., $\mathrm{Ba}(\mathrm{OH}) 2 \rightarrow \mathrm{Ba}^{2+}+2 \mathrm{OH}^{-}$

Given $0.1 \mathrm{MBa}(\mathrm{OH}) 2$, the pOH is $-\log (0.2)=0.7$

Example :- Calculate the pH and pOH of a $2 \times 10^{-3} \mathrm{M} \mathrm{HCl}$?

$$
\begin{aligned}
& {[\mathrm{H}+]=2 \times 10^{-3}} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log \left(2.0 \times 10^{-3}\right)=3-\log 2.0=2.70 \\
& \mathrm{pKw}=\mathrm{pH}+\mathrm{pOH}=14 \\
& \mathrm{pOH}=14-\mathrm{pH}=14-2.70=11.3
\end{aligned}
$$

Example :-Calculate the pOH and pH of a $5 \times 10^{-2} \mathrm{M} \mathrm{NaOH}$? $\left[\mathrm{OH}^{-}\right]=5 \times 10^{-2} \mathrm{M}$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(5 \times 10^{-2}\right)=2-\log 5=2-0.70=1.30$
$\mathrm{pH}+\mathrm{pOH}=14$
$\mathrm{pH}=14-\mathrm{pOH}=14-1.30=12.70$

Example

- A shampoo has a pH of 2.53. Calculate the $\mathrm{pOH},\left[\mathrm{H}^{+}\right]$ and $\left[\mathrm{OH}^{-}\right]$. Is it acidic, basic, or neutral?

$$
p O H=14.00-p H=14.00-2.53=11.47
$$

$$
\left[H^{+}\right]=10^{-2.53}=0.0029 M
$$

$$
\left[\mathrm{OH}^{-}\right]=10^{-11.47}=3.42 \times 10^{-12} \mathrm{M}
$$

$\mathrm{pH}<7$ so acidic
e.g., An aqueous solution of a strong base has pH 12.24 at $25^{\circ} \mathrm{C}$. Calculate the concentration of base in the solution (a) if the base is NaOH and (b) if the base is $\mathrm{Ba}(\mathrm{OH}) 2$.

Answer:
$\mathrm{pH}=12.24$ means that $\mathrm{pOH}=14-12.24=1.76$
Therefore $\left[\mathrm{OH}^{-}\right]=10^{-1.76}=0.0174$
With NaOH , we must have $[\mathrm{NaOH}]=0.017 \mathrm{M}$

With $\mathrm{Ba}(\mathrm{OH}) 2$, we have $[\mathrm{Ba}(\mathrm{OH}) 2]=(0.017 / 2)=8.7 \times 10^{-3} \mathrm{M}$

pH of mixtures

Strong acids and strong alkalis (either in excess)

1. Calculate the initial number of moles of H^{+}and OH^{-}ions in the solutions
2. As H^{+}and OH^{-}ions react in a $1: 1$ ratio; calculate unreacted moles species in excess
3. Calculate the volume of solution by adding the two original volumes
4. Divide moles by volume to find concentration of excess the ion in \mathbf{M}
5. Convert concentration to pH

$$
\begin{array}{ll}
\text { If the excess is } & \mathrm{H}^{+} \quad \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
\text {If the excess is } & \mathrm{OH}^{-} \quad \begin{array}{l}
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \text {then } \\
\mathrm{pH}+\mathrm{pOH}=14
\end{array} \\
\text { or use } & \begin{array}{l}
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1 \times 10^{-14} \text { at } 25^{\circ} \mathrm{C} \text { therefore } \\
{\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right] \quad \text { then }} \\
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
\end{array}
\end{array}
$$

pH of mixtures

Strong acids and alkalis (either in excess)

Calculate the pH of a mixture of $25 \mathrm{~cm}^{\mathbf{3}}$ of 0.1 M NaOH is added to $20 \mathrm{~cm}^{\mathbf{3}}$ of 0.1 M HCI

1. Calculate the number of moles of H^{+}and OH^{-}ions present

2. As the ions react in a $1: 1$ ratio, calculate the unreacted moles of the excess species

$25 \mathrm{~cm}^{3}$ of
0.1 M NaOH
2.5×10^{-3}
malec

The reaction taking place is...
$\mathrm{HCl}+\mathrm{NaOH}$ \qquad NaCl
$+\mathrm{H}_{2} \mathrm{O}$ or in its ionic form
$\mathrm{H}^{+}+\mathrm{OH}^{-}$
\square $\mathrm{H}_{2} \mathrm{O}$
(1:1 molar ratio)
2.0×10^{-3} moles of H^{+}will react with the same number of moles of OH^{-} this leaves $2.5 \times 10^{-3}=2.0 \times 10^{-3}=5.0 \times 10^{-4}$ moles of OH^{-}in excess

pH of mixtures

Strong acids and alkalis (either in excess)

Calculate the pH of a mixture of $25 \mathrm{~cm}^{\mathbf{3}}$ of 0.1 M NaOH is added to $20 \mathrm{~cm}^{\mathbf{3}}$ of 0.1 M HCI

1. Calculate the number of moles of H^{+}and OH^{-}ions present
2. As the ions react in a $1: 1$ ratio, calculate the unreacted moles of the excess species
3. Calculate the volume of the solution by adding the two individual volumes
4. Convert volume to L (divide cm^{3} by 1000)
the volume of the solution is $\mathbf{2 5 + 2 0 = 4 5 \mathrm { cm } ^ { \mathbf { 3 } }}$
there are $1000 \mathbf{~ c m}^{\mathbf{3}}$ in 1L
volume $=45 / 1000=0.045 \mathrm{~L}$

pH of mixtures

Strong acids and alkalis (either in excess)

Calculate the pH of a mixture of $25 \mathrm{~cm}^{\mathbf{3}}$ of 0.1 M NaOH is added to $20 \mathrm{~cm}^{\mathbf{3}}$ of 0.1 M HCI 5. Divide moles by volume to find concentration of excess ion in $\mathrm{mol} \mathrm{L}^{-1}$

$$
\left[\mathrm{OH}^{-}\right]=5.0 \times 10^{-4} / 0.045=1.11 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}
$$

As the excess is OH^{-}use $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$then $\mathrm{pH}+\mathrm{pOH}=14$ or $\quad \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$so $\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right]$

$$
\begin{array}{lll}
{\left[\mathrm{OH}^{-}\right]} & =5.0 \times 10^{-4} / 0.045 & =1.11 \times 10^{-2} \mathrm{M} \\
{\left[\mathrm{H}^{+}\right]} & =\mathrm{K}_{\mathrm{w}} /\left[\mathrm{OH}^{-}\right] & \\
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] & =9.00 \times 10^{-13} \mathrm{M} \\
& =12.05
\end{array}
$$

Example :-Calculate the pH of a solution prepared by mixing 2.0 mL of a strong acid solution (keep track of millimoles) of $\mathrm{pH}=3.0$ and 3.0 mL of a strong base of $\mathrm{pH}=10.0$?

$$
\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-3} \mathrm{M} \mathrm{mmol}
$$

$$
\mathrm{H}^{+}=\mathrm{M} \times \mathrm{V}=1.0 \times 10^{-3} \times 2.0=2 \times 10^{-3} \mathrm{mmol}
$$

$$
\mathrm{pOH}=14-\mathrm{pH}=14-10=4.0
$$

$\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-4} \mathrm{M} \mathrm{mmol}$
$\mathrm{OH}^{-}=\mathrm{M} \times \mathrm{V}=1.0 \times 10^{-4} \times 3.0 \mathrm{~mL}=3.0 \times 10^{-4} \mathrm{mmol}$

There is an excess of acid:-

$$
\begin{aligned}
\mathrm{mmol} \mathrm{H}^{+} & =2.0 \times 10^{-3}-3.0 \times 10^{-4} \\
& =1.7 \times 10^{-3} \mathrm{mmol}
\end{aligned}
$$

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =1.7 \times 10^{-3} \mathrm{mmol} / 5 \mathrm{~mL}(2+3) \\
& =3.4 \times 10^{-4} \mathrm{M} \mathrm{pH} \\
& =-\log 3.4 \times 10^{-4} \\
& =4-0.53 \\
& =3.47
\end{aligned}
$$

Q/ Calculate the pH for the following:
a) 50 ml 0.1 M HCl
b) $50 \mathrm{ml} 0.1 \mathrm{M} \mathrm{HCl}+50 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$
c) $50 \mathrm{ml} 0.1 \mathrm{M} \mathrm{HCl}+50 \mathrm{ml} 0.1 \mathrm{M} \mathrm{NaOH}$
d) $50 \mathrm{ml} 0.1 \mathrm{M} \mathrm{HCl}+40 \mathrm{ml} 0.1 \mathrm{M} \mathrm{NaOH}$
e) $40 \mathrm{ml} 0.1 \mathrm{M} \mathrm{HCl}+50 \mathrm{ml} 0.1 \mathrm{M} \mathrm{NaOH}$

Sol./
a) $\mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$
$0.1 \mathrm{M} \quad 0.1 \mathrm{M} \quad 0.1 \mathrm{M}$
$\mathrm{pH}=-\log 1 \times 10^{-1}=1$
b) $\mathrm{M} 1 \mathrm{~V} 1=\mathrm{M} 2 \mathrm{~V} 2$
$0.1 \times 50=\mathrm{M} 2 \times 100$
$\mathrm{M} 2=0.05 \mathrm{M}$
$\mathrm{pH}=-\log 5 \times 10^{-2}=$
c) $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
$0.1 \times 50 \quad 0.1 \times 50$
m.mole $\mathrm{HCl}=$ m.mole NaOH

$$
\begin{array}{cc}
0.1 \times 50 & 0.1 \times 50 \\
5 & 5 \\
\mathrm{pH}=7 \text { because } & {\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]=\sqrt{K_{w}}}
\end{array}
$$

d) $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
$0.1 \times 50 \quad 0.1 \times 40$
Molaity $\mathrm{HCl}_{\text {excess }}=\mathrm{m}$. mole solution/volume solution $=(5-4) / 90=1 / 90$
$\mathrm{pH}=-\log 1 / 90$
e) $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

$$
0.1 \times 40 \quad 0.1 \times 50
$$

Molaity $\mathrm{NaOH}_{\text {excess }}=$ m.mole solution/volume solution

$$
=(5-4) / 90=1 / 90
$$

$\mathrm{pOH}=-\log 1 / 90$
$\mathrm{pH}=14-\mathrm{pOH}$

