Lecture IV

 pH Calculations for

 pH Calculations for the Hydrolysis of Sallts the Hydrolysis of Sallts
 By/ Dr Ekhlas Q. Jasim

Definitions

Arrehenius
only in water

- Acids - produce H^{+}
- Bases - produce OH^{-}
- Acids - donate H^{+}
- Bases - accept H^{+}

Lewis

used in organic chemistry, wider range of substances

- Acids - accept e- pair
- Bases - donate e- pair

The Bronsted-Lowry Concept Conjugate pairs

$\mathrm{HCl} \mathrm{Cl}^{-}$
$\mathrm{NH}_{4}{ }^{+} \mathrm{NH}_{3}$

$\mathrm{CH}_{3} \mathrm{COOH} \quad \mathrm{CH}_{3} \mathrm{COO}^{-}$

$\mathrm{HNO}_{3} \mathrm{NO}_{3}^{-}$

How does a conjugate pair differ?
H^{+}transfer

- Conjugate acid- compound formed when an base gains a hydrogen ion.
- Conjugate base - compound formed when an acid loses a hydrogen ion.

Acids and bases come in pairs

- General equation is:

$$
\mathrm{HA}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{A}_{(\mathrm{aq})}^{-}
$$

- Acid + Base \leftrightarrow Conjugate acid + Conjugate base
- $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \not \mathrm{NH}_{4}{ }^{1+}+\mathrm{OH}^{1-}$ base acid c.a. c.b.
- $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{1+}+\mathrm{Cl}^{1-}$ acid base c.a. c.b.
- Amphoteric - a substance that can act as both an acid and base- as water shows

Conjugate Acid-Base Pairs

- The conjugate base of a strong acid, is an example of a weak conjugate base.
- The conjugate base of a weak acid, is an example of a strong conjugate base.
- Conversely, a strong base has a weak conjugate acid and a weak base has a strong conjugate acid.

Relationship Between pK_{a} of an Acid and pK_{b} of its Conjugate Base

$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftarrow \rightarrow \quad \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}{ }_{(\mathrm{aq})}$ acetic acid
acetate
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]}=1.8 \times 10^{-5}$
But let us also consider the hydrolysis reaction of acetate, where acetate acts as a base:

$$
\mathrm{CH}_{3} \mathrm{CO}_{2_{(\mathrm{aq})}^{-}}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \leftarrow \rightarrow \quad \mathrm{OH}_{(\mathrm{aq})}^{-}+\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}_{(\mathrm{aq})}
$$

acetate

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]}=5.6 \times 10^{-10}
$$

$$
\begin{aligned}
\mathbf{K}_{\mathrm{a}} \mathbf{K}_{\mathbf{b}} & \left.=\frac{\left[\mathrm{CH}_{3} \mathrm{CO}_{2}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{CH} \mathrm{CO}_{2} \mathrm{H}\right]} \times \frac{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}\right.}{ }_{2}\right] \\
\mathbf{K}_{\mathrm{a}} \mathbf{K}_{\mathrm{b}} & =\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times\left[\mathrm{OH}^{-}\right] \\
\mathbf{K}_{\mathrm{a}} \mathbf{K}_{\mathrm{b}} & =\mathbf{K}_{\mathrm{w}} \\
\mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}} & =\mathrm{pK}_{\mathrm{w}} \quad \text { OR } \quad \mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}=14 \mathrm{at}
\end{aligned}
$$

This is a general result, the K_{a} of an acid and the K_{b} of it's conjugate base are related. From this we can write three equivalent statements...
The higher the K_{a} of an acid, the lower the K_{b} of its conjugate base.

The lower the pK_{a} of an acid, the higher the pK_{b} of its conjugate base.

The stronger an acid is, the weaker is it's conjugate base!

Salts

- Ionic compounds that dissolve $\sim 100 \%$ in water

What is a SALT?

- Composed of the negative ion of an acid and the positive ion of a base.
- One of the products of a Neutralization Reaction
- Examples: $\mathrm{KCl}, \mathrm{NaCl}, \mathrm{MgSO}_{4}, \mathrm{Na}_{3} \mathrm{PO}_{4}$

Neutralization

In general: Acid + Base \rightarrow Salt + Water

All neutrali uon roctions are double displacement reactions.

$$
\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{HOH}
$$

$\mathrm{HCl}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow$
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NaHCO}_{3} \rightarrow$

Salt Solutions

- When salts dissolve, their ions can recombine with water

Salt Solutions

$$
\begin{aligned}
& \mathrm{A}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HA}+\mathrm{OH}^{-} \\
& \mathrm{B}^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}^{+}+\mathrm{BOH}
\end{aligned}
$$

Salt Hydrolysis

To determine if a salt will form an acidic or basic solution, remember the following rules:

Strong acid + Strong base
Strong acid + Weak base
Weak acid + Strong base
\rightarrow Neutral solution
\rightarrow Acidic solution
\rightarrow Basic solution

Acid-Base Properties of Salt Solutions

- Salt solutions are affected by salt hydrolysis, in which ions produced by the dissociation of a salt react with water to produce either hydroxide ions or hydronium ions-thus impacting pH .
- Basic salt solutions - an anion that is the strong conjugate base of a weak acid reacts with water to produce hydroxide ion.

$$
\mathrm{A}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{HA}(a q)+\mathrm{OH}^{-}(a q)
$$

- Neutral salt solutions
- A salt composed of the cation of a strong base and the anion of a strong acid produces a neutral solution.
- These ions do not hydrolyze in water.

For example:

NaCl or KNO_{3}

- Acidic salt solutions
- When the cation of a salt is the strong conjugate acid of a weak base, a solution of the salt will be acidic.

For example:
$\mathrm{NH}_{4}^{+}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{NH}_{3}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)$

Salts That Produce Neutral Solutions

Salts of strong acids/strong bases

Example - solution of MgBr_{2}, salt of strong acid + strong base $2 \mathrm{HBr}_{(\mathrm{aq})}+\mathbf{M g}(\mathrm{OH})_{2(\text { aq) }} \rightarrow \mathbf{2 ~}_{2} \mathrm{O}_{\text {(1) }}+\mathrm{MgBr}_{2 \text { (aq) }}$ formation

$$
\mathrm{MgBr}_{\mathbf{2 a q}) \rightarrow \mathbf{M g}^{2+}{ }_{(\mathrm{aq})}+\mathbf{2} \mathrm{Br}^{-}{ }_{(\text {aq })} \quad \text { dissolution }}
$$

$\begin{aligned} & \text { Weak coniugate } \\ & \text { acid of strong }\end{aligned} \longrightarrow \mathrm{Mg}^{+2}{ }_{(\mathrm{aq})}+\mathrm{CL}_{2} \mathrm{O} \rightarrow$ base
$\begin{gathered}\text { Weas coniugare } \\ \text { base oftlong }\end{gathered} \mathrm{Br}^{-}{ }_{(\mathrm{aq})}+$ H2 $_{2} \mathrm{O} \rightarrow$ base of strong acid

Weak conjugate acid and base do not hydrolyze (do not react with water) $\Rightarrow \mathrm{pH}=7$

Hydrolysis of Salts

Salts can be acidic, basic, or neutral.

1. Neutral Salts

Consider NaCl
The neutralization equation used to produce NaCl will tell us what kind of salt it is.

| $\mathrm{HCl}+$ | NaOH | \rightarrow | $\mathrm{NaCl}+\mathbf{H O H}$ |
| :--- | :--- | :--- | :--- | :--- |
| strong acid | strong base | | neutral salt |

When the acid and base parents are both strong the salt is always neutral.

A neutral salt will dissociate in water.

$\mathrm{NaCl} \rightarrow \mathrm{Na}^{4}+\mathrm{CA}^{\leftarrow} \quad$ no ions to hydrolyze- neutral

Cross off the both ions that come from strong parents as they do not hydrolyze or react further with water- they are neutral.

Salts That Produce Basic Solutions

Salt of Strong Acid/Weak Base

Salts of strong acids/weak bases
Example - aqueous solution of $\mathrm{NH}_{4} \mathrm{NO}_{3}$,
which is salt of strong acid $\left(\mathrm{HNO}_{3}\right)$ and weak base $\left(\mathrm{NH}_{3}\right)$:

$\mathrm{HNO}_{3(\mathrm{aq})}+\mathrm{NH}_{3(\mathrm{aq})} \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3(\mathrm{aq})}$ formation
$\mathrm{NH}_{4} \mathrm{NO}_{3(\mathrm{aq})} \rightarrow \mathrm{NH}_{4}{ }_{(\mathrm{aq})}+\mathrm{NO}_{3^{-}}{ }_{(\mathrm{aq})} \quad$ dissolution \(\underset{\substack{Weak coniugate
base of strong} \mathrm{NO}_{3^{-}}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}\langle\rightarrow}{\rightarrow} \quad\) No reaction acid
$\underset{\substack{\text { coroniugate acid }}}{\text { stron }} \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{NH}_{3(\mathrm{aq})}$ reaction!

Conjugate acid of the weak base is strong thus it will hydrolyze $\Rightarrow \mathbf{p H}<7$

Hydrolysis of Salts

Salts can be acidic, basic, or neutral.
2. Basic Salts

Consider $\quad \mathrm{NaCN}$

$\mathbf{H C N}+$	$\mathbf{N a O H}$	\rightarrow	$\mathbf{N a C N}+\mathbf{H O H}$
weak acid	strong base		basic salt

A basic salt will first dissociate in water

$\mathrm{NaCN} \rightarrow \mathrm{Na}^{+}+\mathrm{CN}^{-} \quad$ negative ion left- basic

Cross off the $\mathbf{N a}^{+}$because it has a strong parent and does not hydrolyze- it is neutral

Then the CN - ion, from the weak parent, will hydrolyze (react with water) as a Bronsted base.
$\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \geq \mathrm{HCN}+\mathrm{OH}^{-}$

Salt of Weak Acid/Weak Base

Salts of weak acids/weak bases

-conjugate base of the weak acid will hydrolyze, as will the conjugate acid of the weak base. One must look at the pK_{a} and pK_{b} to predict the pH of solution.

Example - solution of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$, (ethylammonium benzoate), salt of weak acid + weak base
$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{H}_{(\mathrm{aq})}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}(\mathrm{aq}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2(\text { aq) }}$ formation
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3} \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2 \text { (aq) }} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}{ }_{(\mathrm{aq})}+\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}^{-}{ }_{(\mathrm{aq})}$ dissolution $\rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {(aq) }}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$ (aq) reaction!

But

there's a
fourth option!

How do we predict which wins out in this competition?

- If the K_{a} value for the acidic ion is larger than the K_{b} value for the basic ion, the solution will be acidic.
- If the K_{b} value is larger than the K_{a} value, the solution will be basic.
- Equal K_{a} and K_{b} values result in a neutral solution.

Acid-Base Properties of Salt Solutions

- some solutions of salts affect the pH of an aqueous solution
- any acidic or basic property of aqueous salt solutions results from the reaction between water and the dissociated ions of the salt

1. Salts that dissolve and form Neutral solutions

- the salt of a strong acid/strong base dissolves in water to form neutral solutions
- Cations from strong bases (Group 1 and 2 ions (except Be^{2+}))
- Anions from strong monoprotic acids ($\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{NO}_{3}, \mathrm{ClO}_{4}$)
- The solution has a pH of 7
- Ex: $\mathrm{NaCl} \quad(\mathrm{NaOH}$ is strong base, HCl is strong acid)

Acid-Base Properties of Salt Solutions

2. Salts that dissolve and form Acidic solutions

- salts of weak bases (cation) and strong acids (anion) dissolve in water and form acidic solutions (solution $\mathrm{pH}<7$)
- cation reacts with water
- Ex. $\mathrm{NH}_{4} \mathrm{Cl}$

$$
\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

3. Salts that dissolve and form basic solutions

- salts of strong bases (cation) and weak acids (anion) dissolve in water and form basic solutions (solution $\mathrm{pH}>7$)
- anion reacts with water
- Ex. $\mathrm{NaCH}_{3} \mathrm{COO}$

$$
\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}
$$

Acid-Base Properties of Salt Solutions

4. Salts of weak bases and weak acids

- both ions react with water
- If $\mathrm{K}_{\mathrm{a}}>\mathrm{K}_{\mathrm{b}}$, the solution is acidic
- If $\mathrm{K}_{\mathrm{a}}<\mathrm{K}_{\mathrm{b}}$, the solution is basic
- Ex. $\mathrm{NH}_{4} \mathrm{CN}$
- Since K_{b} of CN^{-}is much larger than K_{a} of NH_{4}^{+}, an aqueous solution of ammonium cyanide will be basic
- The reaction of an ion with water to produce an acidic or basic solution is called hydrolysis

Summary

Behavior of Salts in Water

Hydrolysis of

Result

Anions
Cations

Non-Hyrolyzed lons (a few)

7 Anions, not hydrolyzed
$\mathrm{Cl}^{-}, \mathrm{Br}{ }^{-}, \mathrm{I}^{-}, \mathrm{HSO}_{4}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{ClO}_{3}^{-}, \mathrm{ClO}_{4}^{-}$
10 Cations, not hydrolyzed
$\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Sc}^{+}, \mathrm{Mg}^{++}, \mathrm{Ca}^{++}, \mathrm{Sr}^{++}$, $\mathrm{Ba}^{++}, \mathrm{Ag}^{+}$

Predict whether $0.10 M$ solutions of the following are acidic, basic or nearly neutral.

a) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NHCl}$

b) KF
a) Salts that contain ions that come from a weak acid or base.

Weak Base: $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ trimethylamine

A salt containing the cation of the weak base and the anion from a strong acid. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NHCl}$ trimethylammonium chloride

b) KF

$$
\mathrm{F}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{HF}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

A basic solution

Hydrolysing salt (Brönsted base)

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{K}_{\mathrm{b}} \mathrm{C}_{\text {salt }}}} \\
& {\left[\mathrm{OH}^{-}\right]=\sqrt{\frac{K_{w}}{K_{a}} C_{\text {salt }}}}
\end{aligned}
$$

Hydrolysing salt (Brönsted acid)

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\sqrt{\mathrm{K}_{\mathrm{a}} \mathrm{C}_{\text {salt }}}} \\
& {\left[\mathrm{H}^{+}\right]=\sqrt{\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{b}}} \mathrm{C}_{\text {sait }}}}
\end{aligned}
$$

Example problem:

Suppose a 0.1 mole solution sodium acetate is dissolved in 1 liter of water. What is the pH of the solution?

$$
\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{OH}^{-}
$$

base acid acid base

Init. conc.
Δ conc.
Equil. conc.

0
~ 0

- y
0.1-y
y

1. Find K_{b}
2. Find $\left[\mathrm{OH}^{-}\right]$
3. Find $\left[\mathrm{H}^{+}\right]$
4. Find pH

Example problem:

2. Find $\left[\mathrm{OH}^{-}\right]$
3. Find $\left[\mathrm{H}^{+}\right]$

What is the pH of the solution?
4. Find pH
$\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+\mathrm{OH}^{-}$
Init. conc. 0.1 M
0
~ 0
Δ conc.

$$
-y
$$

$$
+y
$$

$$
+y
$$

Equil. conc. $0.1-\mathrm{y}$
y
y

$$
K_{a} \times K_{b}=K_{w}
$$

Example 1

What is the pH of a 0.10 M NaClO solution if K_{f} for HClO is 3.0×10^{-8} ?
SOLUTION: The salt NaClO exists as Na^{+}and ClO^{-}. The Na^{+}ions are spectator ions, but ClO^{-}ions undergo hydrolysis to form the weak acid HClO . Let x equal the equilibrium concentration of HClO (and OH^{-}):

$$
\begin{array}{lcc}
\mathrm{CO}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) & \mathrm{HCO}(a q)+\mathrm{OH}^{-}(a q) \\
(0.10-x) M & x M & x M
\end{array}
$$

The value of K_{b} for the reaction is $\left(1.0 \times 10^{-14}\right) /\left(3.0 \times 10^{-8}\right)=3.3 \times 10^{-7}$. Because K_{b} is so small, we can neglect x in comparison with 0.10 and thus $0.10-x \simeq 0.10$.

$$
\begin{aligned}
\frac{[\mathrm{HClO}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{ClO}^{-}\right]} & =\mathrm{K}_{b} \\
\frac{x^{2}}{0.10} & =3.3 \times 10^{-7} \\
x^{2} & =3.3 \times 10^{-8} \\
x & =1.8 \times 10^{-4} \mathrm{M} \\
\mathrm{pOH} & =3.74 \\
\text { and } \mathrm{pH} & =14-3.74=10.26
\end{aligned}
$$

Calculate the $\mathbf{p H}$ of a $0.10 \mathrm{M} \mathrm{KNO}_{2}$ solution. $\mathrm{K}_{\mathrm{a}}\left(\mathrm{HNO}_{2}\right)=4.5 \mathbf{1 0}^{-\mathbf{4}}$.
CHEMISTRY: $\mathrm{KNO}_{2}(\mathrm{~s}) \rightarrow \mathrm{K}^{+}+\mathrm{NO}_{2}{ }^{-}$
More Chemistry: $\mathrm{NO}_{2}{ }^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HNO}_{2}+\mathrm{OH}^{-}$

$$
\begin{array}{llcccc}
\text { Equilibrium: } & \text { I } & \mathbf{0 . 1 0} & \text { N/A } & \mathbf{0} & \mathbf{0} \\
& \mathrm{C} & -\mathbf{X} & \text { N/A } & +\mathbf{X} & +\mathbf{+} \\
& \mathrm{E} & \mathbf{0 . 1 0 - X} & \text { N/A } & +\mathbf{X} & +\mathbf{X}
\end{array}
$$

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{HNO}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NO}_{2}^{-}\right]} \quad \mathrm{K}_{\mathrm{a}} \mathrm{~K}_{\mathrm{b}}=\mathbf{1 . 0} \times 10^{-14}
$$

$$
2.22 \times 10^{-11}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.10-\mathrm{x}]} \quad \begin{aligned}
& \text { Try dropping } \\
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=5.83
\end{aligned}
$$

$$
\mathrm{x}=1.49 \times 10^{-6}=\left[\mathrm{OH}^{-}\right] \quad \mathrm{pH}=14-5.83=8.17
$$

Calculate the $\mathbf{p H}$ of a $0.10\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NHCl}$ solution. $\mathrm{K}_{\mathbf{b}}\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NHCl}\right)=7.4 \mathbf{1 0}^{-5}$.

CHEMISTRY: $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NHCl}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$
More Chemistry: $\quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NHOH}^{-}+\mathrm{H}^{+}$

Equilibrium: I $\mathbf{0 . 1 0}$
N/A
0
0

C	-x	N/A	$+x$	$+x$
E	$0.10-\mathrm{x}$	N/A	+x	+x

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[(\mathrm{CH})_{3} \mathrm{NHOH}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[(\mathrm{CH})_{3} \mathrm{NH}^{+}\right]} \quad \mathrm{K}_{\mathbf{a}} \mathrm{K}_{\mathrm{b}}=1.0 \times 10^{-14}
$$

$$
1.35 \times 10^{-10}=\frac{[x][x]}{[0.10-x]}
$$

Try dropping

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=5.43
$$

$$
\mathrm{x}=3.68 \times 10^{-6}=\left[\mathrm{H}^{+}\right]
$$

