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ANALYSIS OF FREQUENCY
DATA: AN INTRODUCTION
10 THE CHI-SQUARE
DISTRIBUTION

CHAPTER OVERVIEW

This chapter explores techniques that are commonly used in the analysis of
count or frequency data. Uses of the chi-square distribution, which was
mentioned briefly in Chapter 6, are discussed and illustrated in greater de-
tail. Additionally, statistical technigues often used in epidemiological studies
are introduced and demonstrated by means of examples,
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SUMMARY

LEARNING OUTCOMES

After studying this chapter, the student will
1. understand the mathematical properties of the chi-square distribution.
2. be able to use the chi-square distribution for goodness-of-fit tests,

3. be able to construct and use contingency tables to test independence and
homogenaity.
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INTRODUCTION A

4, beable to apply Fisher's exact test for 2 < 2 tables.

5 understand how to caleulate and interpret the epidemiological concepts of
relative risk, odds ratios, and the Mantel-Haenszel statistic.

12.2 THE MATHEMATICAL PROPERTIES
OF THE CHI-SQUARE DISTRIBUTION

In the chapters on estimation and hypothesis testing, brief mention is mude of the chi=
sqquare distribution in the construction of confidence intervals for, and the tesling if;
hypotheses concerning a population variance, This distribution. which is one of the mo
widely vsed distributions in statistcal applications, has many other uses. Somc of th
more commoen ones are presented in this chapter along with a maore complete desenp
tion of the distribunon itself, which follows n the next section. )
The chi-square distribution is the most frequently employed statistical twechnig
for the analysis of count or frequency data, For example, we muy know for a samplegh
hospitulized patients how many are male and how many are female. For the same sik
ple we may also know how many have private insurance coverage, how many
Medicare insurance, and how many are on Medicaid assistunce. We may wish @ kr.l
for the population from which the sumple was drawn, if the type of insurance co
differs according o gender. For another sample of patients. we muy have lrequent
each dingnostic category rcprl:ﬁr.:ntml and I'm' ﬂu:h seographic arcd represenied, We
gt to know suime was deian, thiere is el
ship between area of residence and dl-_t_gt!nhi!\. We will Jewrn how 1o use ¢hi- ‘-qu‘u'ci'_ 7
sis 1o answer these types of questions. .
There are other statistical technigues that may be vsed 1o analyze frequency di
in an effort o answer other types of questions, In this chapter we will also leam
these technigues,

The chi-square distribution may be derived from normal distributions. Hup]‘n‘ﬁcﬂl
a normally distributed random variable ¥ with mean g ond varianee o we
and independemtly select samples of size n = 1, Each value selected may bt
formed o the standard normal varable = by the 1':,1mi.li:1r formula

Each value of = miy be squired to obtain = When we investigate the samplhi
bution of =7, we find that it follows i chi-square distribution with | degree of f
That 1s,
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Now suppose that we randomly and independently select samples of size n = 2 from
the normally distributed population of ¥ values, Within cach sample we may transform
cach value of v 1o the standard normal variable z and square as before: I the resulting
values of 2* for each sample sre added. we may designate this sum by

5 -
2 (-"! 5 F‘)' ¥ — FJ" - P
=\ ) ¥ = +z;
JE i’ i

since it follows the chi-square distribution with 2 degrees of Treedom, the number of
independent squared terms that are added together,

The procedure may be repeated for any sample size n. The sum of the resulting =°
values in each case will be distributed as chi-square with n degrees of freedom. In gen-
eral. then,

- T i o P |
_:t",:..n =) + <3 el =) < 1'2.2-1]

follows the chi-square distribution with n degrees of freedom. The mathemutical form of
the chi-square distribution is as follows:

l | (201 (/2]

Sy = (T )—FM i 2= (12:2.3)
===[] I}
2
where e is the irrational number 271828 © .+« and k is the number of degrees of free-

dom, The variate » is wsually designated by the Greek letter chi () and, hence, the
distribution is called the chi-square distribution. As we pointed out in Chapter 6, the chi-
square distribution has been tabulated in Appendix Table E Further use of the table is
demonstrated as the need arises in succeeding sections.

The mean and variance of the chi-square distribution are & and 24, respectively,
The modal value of the distribution is & — 2 for values of & greater than or equal to 2
and is gero for k= |,

The shapes of the chi-square distributions for several values of 4 are shown in Fig-
ure 6.9.1. We observe in this figure that the shapes for k = | and & = 2 are quite ciffer-
ent from the general shape of the distribution for & = 2. We also see from this ligure thi
chi-square assumes values between 0 and infinity. It cannot take on negative values, since
it is the sum of values that have been squared. A final churseteristic of the chi-square dis-
tribution worth noting is that the sum of twe or mare idependent chi-square variables
ilso follows 3 chi-square distribution.

Types of Chi-Square Tests 4. already noted. we make use of the chi-square
distribution in this chapter in testing hypatheses where the data available for wnlvsis
dre in the form of frequencies, These hypothesis testing procedures are discussed under
the topics of tests of poodness-of-fit, tests af independence, and resey of homageneity, We
will discover that, in a sense, all of the chi-square tests that we employ may be thought
of as goodness-of-fit tests, in that they test the goodness-of-fit of observed frequencies o
frequencies that one would expect if the data were generated wnder some particular the-
ory or hypothesis, We. however. reserve the phrase “goodness-of=Ar™ for vse in g more
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restricted sense. We use it to refer 1o o comparison of a sample distribution to some ﬂ'ﬂv
pretical distnbotion that it s assumed desenibes the population from which the ﬁ.'me:I_:
came. The justification of our use of the distribution in these situations is due o Kl
Pearson (11, who showed that the chi-square distribution miy be used as a test of the 1
agreement between observation and hypothesis whenever the data are in the form af
frequencies. An extensive treatment of the chi-square distribution s to be found in the
book by Lancaster (2). Nikualin and Greenwood (37 offer practical advice for conducting
chi-squire fests, '

Observed Versus Expected Frequencies The chi-square statistic is 10
appropriate for use with categorical variables, such as marital status, whose values are i
categories married, single, widowed, and divorced. The guantitative data wsed in the -"
putation of the test stistic are the frequencies associated with each category of the o
or more variables under study, Thert are twe sets of frequencies with which we ane ol
cened, observed fregrencies and expecrted fregrencies. The observed Trequencies arg e
number of subjects or objects in our sample that fall ingo the various categories of the v
able of interest, For example, if we have a sample of 100 hospital patients, we may ohse
that 50 are marned, 34 are singic, 15 are-widowed, and 3 are divoreed, Expected frequens
cies are the number of subjects or objects in our sample that we would expect 1o
if some null hypothesis about the variable 1s true. For example, our null hypothesis

be that the four categories of marital stutus are equally represented in the population from
which we drew our sample. In that case we would expect our sample o contain 25 s
ricd, 25 single, 25 widowed, and 25 divoreed patienls,

The Chi-Square Test Statistic The test statistic for the chi-square tests We
diseuss i this clhapter is

L[l
o -3(%

frequencies, and an additional restriclion Is imposed for each parameter that is esti
from the sample,

In Equation 12.2.4, €2, is the observed frequency for the ith category of the v
of interest, and £, is the expected frequency (given that M is true) for the fth '

The quantity X* is 4 measure of the extent to which, in a given situation, p. I
observed and expected frequencies agree, As we will see, the nature of X7 is sucl
when there is close agreement between observed and expected frequencies it is.
and when the agreement 1s poor it 1s large. Consequently, only a sulficient]y large vald
of X? will cause rejection of the null hypothesis.

It there is perfect agreement between the observed [requencies and the freg
that ope would expect. given that Hy, is true; the term &, = £, in Equation 12
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beequal to zero for each pair of observed and expected frequencies. Such a result would
vield a value of X° equal 1o zero, and we would be unahle to reqect M.

When there is disagreement between observed frequencies and the frequencies one
~wonld expect piven that #, is true. at least one of the € — Ejterms in Equation 12,2 4
“will be a nonzero number. In general, the poorer the agreement between the €3, und the

£, the greater or the more Frequent will be these nonzero values. As noted previousty,
il the agreement between the €, and the E, is sufhciemtly poer (resulting in a sufficiently
- lurge X- value,) we will be able 1o reject M,

When there is disagreement between a pair of observed and expected lrequencies,

the difference may be either posinive or negative, depending on which of the two Ireguen-
£ies s the larger, Since the measure of sgreement. X7, is 1 sum of COMPONEnt quantitics
Wwhose magnitudes depend on the difference € — £, pwitive and neeative differences
must be given equal weight. This is achieved by syuaring each €, — £, difference. Divid-
ing the squared differences by the appropriate expected frequency converts the quantity
10 8 term that is measured in original units. Adding these individual (), EE; terms
yields X°, o summary statistic that reflects the extent of the overall agreement belween
- observed and expected [requencies,

The Decision Rule 1n¢ quantity 2[(0; — E )Y E;] will be small if the observed
and expected frequencies ure close tegether and will be large if the differences are large.

The computed value of X7 is compared with the tabulated value of X owith & — p
degrees of freedam. The decision rule, then. is: Reject Hy if X7 s preater than or equal
to the tebulated 4'3 tor the chosen value of .

Small Expected Frequencies Frequently in applications of the ¢hi-square
lest'the expected frequency for one or more categories will he smull, perhaps much less
thin 1. In the literature the point is frequently made that the approximation of X 1o e
38 not strictly valid when some of the expecied frequencies are small. There is disagree-
ment among writers, however, over what size expected frequencies are allowable before
taking some adjusiment or abandoning y* in favor of some alternative tesi. Sime writ-
ers, especially the earlier ones, suggest lower limits of 10, whereas others sugoest thal
il expected frequencies should be no less than 3. Cochiran (4. 5, suggests that for pood-
nnﬁri-uf-ﬁl tests of unimodal distributions (such as the normal), the minimum expected
requency cin be as low as 1. 1f, in practice. one encounters one or moie expected fre-
quencies less than 1, adjacent categories may be combined 1o achieve the sugpested min-
imum, Combining reduces the number of categories and, therefore, the number of degrees
af freedom. Cochran’s suzgestions appear 1o have been followed extensively by practi-
tiomers. in recent vears,

OF GOODNESS-OF-FIT

As we have pointed out. o goodness-of-fit test is appropriate when one wishes 1o decide
A an observed distribution of frequencies is incompuatible with some preconceived or
hypothesized distribution,
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We may. for example, wish to determine whether or not 4 sample of observed val=
ues of some random variable is comparible with the hypothesis that it was drawn from
a population of values that is normally distributed. The procedure for reaching a degis
sion consists of placing the values into mutually exclusive eategories or class intervals |
and noting the frequency of occurrence of values in each category, We then make useof
our knowledge of normul distributions to determine the frequencies for each categary
thiat one could expect if the sample had come from a normal disteibution. If the d;s{m:pf
ancy 1s of such magnitude that it could have come about due 10 chance, we cancl
that the sample may have come from u normal distribution. In a similar manner. fests ¢
goodness-of-fit may be carried out in cases where the hypothesized distribution is
binomial. the Paisson, or any other distribution. Let us illusteate in more detail with il
examples of tests of hypotheses of goondness-of-fit.

EXAMPLE 12.3.1 The Normal Distribution

Cranor and Christensen (A-1) conducted o study 1o assess shor-term elinical, economiel
and humanistic outcomes of pharmaceutical cure services for patients with dinbetes i
community pharmacies. For 47 of the subjects in the study. cholesterol levels are
marized in Table 12.3.1.

We wish 10 know whether these data provide sufficient evidence 1o indical tha
the sample did not come from o normally distributed populition, Ley o = 05

Solution:

L. Data. See Tible 12,31,

2. Assumptions. We assume that the sample availuble for anilysis S
sitnple random sample.

TABLE 12.3.1 Cholestersl Lovels as
Described in Example 12.3.1

Cholesterol

Level (mg/fdl) Mumber of Subjects
100.0-124.4

125.0-149.9 3
150.0=174.9 -]
175.0-159.9 18
200.0-224.9 G
225.0-249.9 4
280.0-274.9 4
275.0-299.9 3

Swurees Carole W, Cronor, and Dale ©, Christensan,
"Tha Ashevilly Project: Shor:Term Duleames of a
Community Pharmacy Diabates Care Program,”
Journal af the American Pharmaceutics! Asgociation,
43120031 148-159, Usod with permission.
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3, Hypotheses,

H,: In the population from which the sample was drown,
cholesterol levels are normally distributed.
H,: The sumpled population 1s not normally distributed.

4. Test statistic. The tesl statistic 18

- EJ']: ]

(0
“"=§|__ £

Distribution of test statistic, I f7; is true, the test statistic s distrib-
uted approximately as chi-square with & — r degrees of freedom. The
values of & and r will be determined later.

n
*

6. Decision rule. We will reject Hy 1f the compuied value of X * s equal
to or ereater than the critical value of chi-square.

7. Caleulation of test statistic. Since the mean and varianee of the
hypothesized distribution are not specified, the sample datd must be used
Lo estintate them, These parameters, or their estimales, will he needed
to compute the frequency that would be expected in cuch class interval
when the null hypothesis is troe. The mean andd standard deviation con-
puted from the grouped data ol Table 12.3.1 are

Vo= |uR6eT
¢ =:4131

As the next step in the anulysis, we must abtain lor each class
interval the frequency of eecurrence of values that we would expedt
when the null hypothesis is true, that is. if the sample were, in fact,
drawn from a normully distributed population of values. To do this,
we first determine the expected relative (requency of occurrence of
values For each class interval and then multiply these expected rels-
tive frequencies by the total number of values to obtain the expected
number of values Tor cach interval.

The Expected Relative Frequencies

It will be recalled from our study of the normal distribution that the relative frequency of
accurtence of values equal o or less thitn some specified value. say, xq, of the pormally dis-
iributed random varable X is equivalent to the area under the curve and to the left of ¥, us
represented by the shaded area in Figure 12,3 1. We obtain the numerical value of this area
by converting x o a standard normal deviation by the formula 2, = (xy— pife anel find-
ing the appropriate value in Appendix Table D. We use this procedure lo obtain the expected
relative frequencies corresponding 1o cach of the class intervals in Table 12.3.1. We esli-
mate g and o with ¥ and s as computed from the grouped sample data, The first step con-
sists of ohtuining = values corresponding 10 the Tower limit of cach class interval. The ares
helween twi Successive = vulues will give the expected relutive frequency of oceumence ol
values Tor the corresponding class interval,
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T X

FIGURE 12.3.1 A normal distribution showing the relative frequency of
aocurranie of values less than or equal 10 x, The shaded srea represents the
relative frequency of occarrence of values equal to or less than x.

For example, 1o obtain the expected relmtive frequency ofF oceurrence of values i thel
interval AL Lo 1249 we proceed as follows:

_!_\_fi{i.{i = 19867

The = value corresponding o X = 1000 1= 2 = Al -2.3
\ , . 1250 — 198.67
The z value corresponding to X = 12500 - = — T =—1.T%

In Appendix Table D we find that the area 1o the feft of —2.30 is (084, and the anea )
the left of —L78% is 0375, The area between — 178 and —239 is equal @
0375 — 0084 = 0291, which is equal to the expected relative frequency of occu
of cholesterol levels within the interval 1D 0 1249, This ells us that i the
hypothesis is true, that 15, it the cholesteral levels are normally distributed, we !
expect 291 percent of the values in our sample 10 be between 100.0 and 124.9.
we multiply our wtal sample size, 47, by 0291 we find the expected frequency for
interval wy be LA Similar caleulations will give the expected (requencies for the
intervals as shown in Table [2.3,2,

TABLE 12.3.2 Class Intervals and Expected Frequencies for
Example 12.3.1

={x - Xl's

At Lower Limit Expected Relative Expected
Class Interval of Interval Frequency Frequency
< 100 O0ed 4 }”5
100.0-124.9 —2.39 029 1.4
125.0-149.9 1.78 0815 38
150.0-174.9 1.18 BRI 18
175:.0-199.9 — &7 2277 0.7
200.0-224.9 03 289 107
225.0-249.9 B AB3E T2
250.0-274.9 1.24 0753 358
275.0-299.9 1,85 0257 1.2 }!.E
300,80 and greater 2.45 L0071 3
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Comparing Observed and Expected Frequencies

We are now interested in examining the magnitudes of the discrepancies between the
observedl frequencies and the expected frequencies. since we note that the two sets of fre-
guencies do not agree. We know that even if our sample were drawn from a nornal dis-
tribution of values, sampling variability alone would make i1 highly unlikely that the
shserved and expected frequencies would agree perfectly, We wonder, then, if the dis-
crepancies hetween the ahserved and expected frequencies are small enough that we feel
it reasonable that they could have oceurred by chance alone, when the null hiypothesis is
true. If they are of this magnitude, we will be unwilling to reject the null hypothesis that
the sample came from a normally distributed population.

If the discrepancies are so large that it does not seem reasonahle thiat they could
have occurred by chance alone when the null hypothesis 1s true, we will want o reject
the null hypothesis. The criterion against which we judge whether the discrepancies are
“large’ or “small” is provided by the chi-square distribution.

The observed and expected frequencies along with gach value of (O — EV/E,
are shown in Table 12.3.3, The first entry in the last column, for example, s computed
from (1 — LBYH 18 = 336, The other values of {0 - E,}I:;"E, are computed 10 a sim-
ilar manner.

From Tible 123.3 we see that X* = Z[(0; — ENVE] = 10,566, The appropri-
ate degrees of freedom are 8 (the number of groups o ¢lass intervals) = 3 (for the
three restrictions: making SE =20, and estimating g and o from the sample
data) = 3

§. Statistical decision. When we compare ¥ = 10.566 with values of ¥
in Appendix Table F, we see that it is less than yhe = 11LO70, so that,
a1 the .05 level of significance, we cannol reject the null hypothesis that
the sample came from i normally distibuted population.

TABLE 12.3.3 Observed and Expected Frequencies and
(0, — E;Y¥/E; for Example 12.3.1

Observed Expected
Fraquency Frequency

Class Interval ] [E) (o, - ENV/E
= 100 o ]
100.0-124.9 1 1.4 } L G
125.0-149.9 3 3.8 68
160.0-174.8 B 78 005
175.0-199.2 18 10.7 4980
200.0-224.8 B 10.7 2,064
728.0-249.9 4 72 1.427
26002749 4 &S 071
276.0-299.5 3 1.2 } 15 1600
3000 and graatar i 3

Total 47 47 10.566
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9. Conclusion. We conclude that in the sampled population, cholesten
levels may Tollow a normal distribution,

10. p value, Since 11070 = 10,566 = 0,236, 05 < p o< 100 In othee
words. the probability of obtaining a value of X s large ps 10,566
when the null hypothesis is tve, is between .05 and 0. Thus we cis
clude that such an event is not sufficiently rare 1o reject the null hyp
esis that the data come from a normal distribution,

sometimes the parameters are specified in the null hyputhesis, 1t should be noted
that had the mean and variance of the population heen specificd as part of the pll
hypothesis in Example 12,31, we would not hive had o estimate them from the sme
ple and our degrees of freedom would have been 8 — | = 7.

Alternatives Although one frequently encounters in the literature the use of chis
siuare to test for normality, it is not the most appropriate test to use when the h
esized distribution is continuous. The Kolmogorov-Smirmov fest, described in Chap
L3, was especially designed for goodness-of-fit tests mvelving continuous distributig

EXAMPLE 12.3.2 The Binomial Distribution

[ a study designed 1o determine patient acceptance of a new puin reliever, 100 i
cuns each selected 4 sample of 25 patients to participate in the study, Fach puii{:ﬁh'
trymg the new pain reliever for a specified period of ime. was asked whether
preferahle 10 the pain reliever used regularly in the past.

The results of the study ure shown in Table 12.3 4.

TABLE 12.3.4 Results of Study Described in Example 12.3.2

Total Number

Mumber of Patients of Patients
Out of 25 Number of Preferring Mow
Preferring New Doctors Reparting Pain Reliever
Fain Reliever this Number by Doctor

0 5 H

1 6 f

F g 16

3 10 a0

i 0 40

2 14 75

& 17 o2

7 10 0

b3 LH 80

g 4 ET
10 ar moro 0 0

Tatal 100 500
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We are interested in determining whether or not these data are compatible with the
hypothesis that they were drawn from a population that follows a binomial distribution,
Again, we employ a chi-square goodness-of-At test.

Solution:

Since the hinomial parameter, p. is not specified, it must be estimated from
the sample data, A total of 500 patients out of the 2500 patients participat-
ing in the study said they preferred the new pain reliever. so that our point
estimate of pis p = 500/2500 = .20. The expected relative frequencies can
be obtained by evaluating the binomial function

25
flx) = ( ).T.H'” !
X

forx =14, 1...., 25, For example, to find the probability that out of & sam-
ple of 25 patients none would prefer the new pain reliever, when in the wtal
population the true proportion preferring the new pain reliever is .2, we would

evaluate
25
- . 2 5l B ]
T ( A j 28

This can be done most easily by consulting Appendix Table B, where wo
see that PLX = 0) = 0038, The relative frequency of oceurrence of sam-
ples of size 23 in which no patients prefer the new pain reliever 15 A038,
To obtain the corresponding expected frequency. we multiply (0038 by 100
to pet 38, Similar calculations yield the remaining expected frequencies,
which, along with the observed frequencies, are shown in Table 12.3.5, We

TABLE 12.3.5 Calculations for Example 12.3.2

Mumber of

Number of Doctors Reporting
Patients Out of 25 This Number Expectad Expected
Preferring Mew (Observad Relative Fragquency
Pain Reliever Frequency, O Freguency E;

0 5] 0038 .38 }z.m
1 6 | 0236 2.36
2 g 0708 T.08
3 w0 L1358 13.58
4 10 867 18.67
5 15 1960 1960
i 17 1633 16.33
7 iH 1105 11,05

B 10 0623 523
g ] 02595 2.95
10 oF more ] 73 1.73
Total a0 1.0000 100.00
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see in this table that the first expected frequency is less thun 1, so that we
follow Cochran's suggestion and combine this group with the second group,
When we do this, all the expected frequencies are areater than |,
From the data, we compute
e (11— 274 (8 = 7.08)° (0 — 1.73)
AT = | — = ——

-+
2.74 7.08 .73

= 47.6M

The appropriate degrees of freedom are 10 (the number of STOUpY Jr.:[E
after combining the first two) less 2, or 8, One degree of freedom is fos
because we force the totul of the expected frequencies 1o equal the total
observed frequencies. and one degree of freedom s sacrificed becanse we
estimated p from the sample data,

We compare our computed X with the tabulated y* with & degreess
of freedom and find that it is significant at the (05 level of significance)
that is, p < 005, We reject the null hypothesis that the data came from &
Binoamial distribution. l'

EXAMPLE 12.3.2 The Poisson Distribution

A hospital administrator wishes to test the null hypothesis th emergency admissions
follow a Poisson distribution with A = 3, Suppose that over u period of 90 days the nu:
bers of emergency admissions were as shown in Table 12.3.6.

TABLE 12.3.6 MNumber of Emergency Admissions to a Hospital During a
90-Day Period

Emergency Emeargency | Emergency Emerge
Day Admissions Day Admissions Day Admissions Day Ad i
1 Ty 24 5 47 4 mn 3
2 3 25 3 45 2 Il g
3 4 26 2 48 2 T2 4
q =] 27 4 i H 3 73 1
L 3 28 4 51 4 T4 1
& 2 29 2 62 2 75 3
r 3 an 5 53 3 15 3
8 o R 1 54 1 Ex 3
4 i 32 3 55 2 78 g
10 0 33 2 B6 3 74 3
1 1 34 4 57 2 B0 1
12 0 35 7 58 5 81 [
13 5] 36 & 59 2 52 Fi
14 4 a7 u] B0 T 23 1
i5 4 38 fi 81 B 834 2l
16 4 39 4q st 3 85 1

g
=
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Emergency Emergency Emergency Emergency
Day Admissions Day Admissions Day Admissions Day Admissions
17 3 aa 4 &3 1 BE 4
18 4 41 B &4 3 87 4
18 3 a2 1 &5 1 BE 9
20 3 a3 3 Bl ] 25 Z
1 3 ad 1 67 3 ad 3
22 4 45 2 B 2
23 3 46 3 it} 1

The data of Table 1236 are summarized in Table 12.3.7.

Solution: To obtuin the expected frequencies we first obtain the expected relanve fre-
quencies by evaluating the Poisson function given by Equation 4.4, ] for cach
entry in the lefi-hand column of Table 12.3.7. For example. the first expected
relative frequency is obtained by evaluating

‘_-1?“
(0) = =
A0 ==

We may use Appendix Table C o find this and all the other expected rel
ative frequencies that we need. Each of the expected relutive frequencies

TABLE 12.3.7 Summary of Data Presented
in Table 12.3.6

MNumber of
Mumber of Days This Number
Emergency Admissions of Emergency
ina Day Admissions Decurred

5
14
15
23
6

5 =t =2 @) L

or mora

Total a0
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TABLE 12.3.82 Observed and Expected Frequencies and Components
of X* for Example 12.3.2

Number of

Mumber of Days this Expected

Emergency Mumber Relative Expected Q- _E.u}2

Admissions Oceurred, O; Frequency Frequency E
0 5 050 4,50 056
1 14 144 1341 026
2 15 224 2016 1.321
3 23 224 20.16 A00
) 16 L1638 15.12 B51
5 g LM 9.05% Reley]
B 3 50 4,50 SO0
[ 3 022 1.898 525
B 1 ‘1 .0os Br. _
g 1 003 27 »1.08 ed
10 or more ﬂ.r 0 08

Total g0 1.000 90.00 3.664

i= multiplicd by 9 o obtain the corresponding expected freque ¢
These values along with the observed and expecied frequencies aﬂd;
components of X2, (0, — E,Y/E; are displayed in Table 12.3.8, in whig
we see that

. (0, = EF1 (53— 450) (2 — 1.08)°
= = A - - = s —_— ., e
X E{ E ] 4.50 1.08

We also note that the last three expected frequencies are less than 1, 5ol
they must be combinegd 1o aveld having any expected frequencies less i
This means that we have only nine effective categories for compuling
degrees of freedom. Since the purameter, A, was specified in the ml
hypothesis, we do not lose a degree of freedom for reasons of esti
so that the appropriate degrees of freedom are 9 — | = 8. By con
Appendix Table F, we find that the critical value of ¥ for 8 degrees of
dom and a = 03 is 15307, so that we cannot reject the null hypoth
the .05 level. or for that matter any reasonable level, of signi
{p = 10). We conclude, therefore, that emergency admissions at this
pital may follow a Poisson distribution with A = 3, At Jeast the ob
dita do not cast any doubt on that hypothesis. .

If the parameter A has to be estimated from sample data, the estim
is obtained by multiplying each value x by its frequency, summing
products; and dividing the toral by the sum of the frequencies.
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EXAMPLE 12.3.4 The Uniform Distribution

[he flu senson

in southern Nevada for 2005=2006 ran from December e April, the

coldest months ol the vear. The Southern Nevada Health District reported the numbers
of vaccine-preventable influenza cases shown in Table 12.3.9. We are interested in
knowing whether the numbers of flu cases in the district are equally distributed among
the five flu season months. That is, we wish o know if flu cases follow a uniform

distriburion,

Solution:

n
-

Data. See Table 12.3.9,

Assumptions. We assume that the reported cases of flu constitute a sim-

ple random sample of cases of flu that oceurred in the district.

Hypotheses,

Hy: Flu cases in southern Nevada are uniformly distributed over the five
flu season months.

H . Flu cases in southern Nevada are not uniformly distributed over the
five flu season months.

et o = A
Test statistic, The test statisne is

(0, — E)

X'= 3 =

Distribution of test statistic. If H, is true. X7 is distributed approxi-
mately as y° with (5 — 1) = 4 degrees of freedom.

Decision rule. Reject H), if the computed value of X7 s equal to or
greater than 13.277,

TABLE 12.3.9 Reported Vaccine-Preventable
Influenza Cases from Southern Mevada,
December 2005-April 2006

Maonth

Number of
Reported Cases
af Influenza

December 2005
Janwary 2008
February 2008
Warch 2006
April 2006
Total

G
a4
17
16
21
200

Source: hitpeiivwww southermnevadahealihdisinetorg/
epidemiclogy/disoage_statistics o
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Value

8]
Catagory

Chart of Observed and Expected Values

81 4
0
&
50 4
40 4
a0 -
20 1
10 4

1 2 3

O Expected
m Chsarved

Categoary
1
2
3
4
5
M nr
2410 4

Chi-Square Goodness-of-Fit Test for Observed Counts in Variable: C1

Ohseryved
6l
B
il
1A
21

Chi-Sqg B~

97.15

Test Contribution
Proportion Expected to Chi-gg

0.2 410 12,100 I

.2 40 48.400 t

|

B2 40 13,2485 I

Q.2 40 14,400

0.2 40 9.025

Value
0. ooa

FIGURE 12.3.2 MINITAB output for Exarmple 12.3.4.

7. Caleulation of test statistic. If the null hypothesis is e, we

. Statistical decision. Since 97.15. the computed value of X7, is 8

expect 10 observe 2060/5 = 40 cases per maonth. Figure 1232 Shiows th
computer printout obtained from MINITAB. The bar praph show
abserved and expected frequencies per month. The chi-square table
vides the observed frequencies, the expected frequencies based on
form distribution. and the individual chi-square contribution for esch
value.

than 13.277, we reject, based on these data, the null hypothesis
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uniform: distribution of flu cases during the flu season in southern
Nevadi
9. Conclusion. We conclude thit the ocetirrence of flu cises does not fol-
low a niform distribution.
10. p value. From the MINITAR output we see that p = 000 (e, < 001},
]

EXAMPLE 12.3.5

A certain human rai s thought to be inherited iccording 1o the ratio 1:2:1 for
homozygous dominant, heterozygous. and homozygous recessive. An examination of
a simple random sample of 200 individuals yielded the following distribution of the
trait: dominant, 43; heterozyzous, 125; and recessive, 32. We wish to know il these
data provide sufficient evidence to cast doubt on the belief about the distribution of
the: teail.

Salution:

L. Data. See statement of the example.
2. Assumptions, We assume that the data meet the requirements for the up-
plication of the chi-square goodness-of-fit test,
3. Hypotheses,
Hy: The trait is distributed according to the ratio 1:2:] for homozygous
dominant, heterozypous, and homozyvgous recessive,
Hx: The trait is not distributed according 1o the rario 1:2:1,
4. Test statistic, The test statistic is
[(@ - E)? |

X== El F

Distribution of test statistic. [ Hy is true, X7 is distributed as chi-square
with 2 degrees of freedom,

thn
h

f

Decision rule. Suppose we let the probability of committing u type | error
be 05, Reject Hy, if the computed value of X7 is equal 10 or greater than
5,991,

7. Caleulation of test statistic, If Hy is true, the expected frequencies for
the three manifestations of the trail are S0, 100, and 30 for dominant,
heterazygous, and recessive, respectively. Consequently.

X% = (43 — 50)%/50 + (125 - 100)2/100 + (32 — 501/50 = 13.71

8. Statistical decision. Since 1371 > 599, we réject &,
9. Conclusion. We conclude that the trit is not distributed according 1o the
rati | :2:1.

10, p value. Since 13.71 = 10.597, the prvalue forthe testis p < (05, m
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EXERCISES

12.3.1

The following table shows the distribution of uric acid determinations taken on 250 patients. | |-, !
the goodness-of-fit of these data 1o 4 normal distribution with & = 374 und ¢ = 2.01. Let o= fif

Uric Acid Observed Uric Acid Observied
Determinution Frequeney Determination Freguency
= 1 1o 64y 45

I w Loy 5 71 7.59 K[|
2o 245 | 5 B0 849 i

Ao 3490 Xl iy 9,99 I

4 1o 494 43 0 or higher 3
3o 3494 )

Tstald 250

The following data were collected on 300 eight-vear-old givls. Test, at the 05 level of "'5"'-,

the null hypethesis that the data are drswn from a normally distributed population. The s i
mean and standard deviation computed Trom greuped datg are 12702 and 5,08,

Height in Ohserved Height in Ohbserved
Centimeters Fregueney Centimeters Frequeney
4o 115 5 |28 o 12049 43
6 ta 1179 L 1300 1319 42
Bk TR AT 4 132 o [33.5 a
120 o 1219 21 134 1 J35.0 1

[22 w 123.9 i 1in o 1379 J
124 o 1255 4l 538 10 1399 4
126 0 1279 45

Toral Mk

The face sheet of patients” records maintained in o local healih department contiing e
A samiple of 100 records revenled the following distribution of crroneots entrics:

Number of Erroncous

Entries Out of 10 Numbier of Records
(b 5
| P
2 32
2 24
4 I
3 or more |

Tl KD




12.34

1235

EXERGISES GT1

Test the govdness-of-fit of these data to the binemial distribution with p = 20, Find the f value
for this s,

In o study conducted by Byers et al. (A-2), researchers tesied 4 Poisson model for the distribution
of activities of daily living (ADL) scores after § T-month prehabilitation program designed 1o pre-
vent functional decline among physically frail. community-living older persons. ADL measired
the ability of individuals 1o perform essential tasks, mncluding walking inside the house, bathing,
upper-and Jower body dressing, transferring {rom g chaie. toileting, feeding. and grooming. The
scoring method wsed in this study sssizned 3 value of O for o (personall help and no difficully,
I for difficulty but no help, and 2 for help regardless of difficulty. Scores were summed o pro-
duce an overall score ranging from 0 10 16 (for cight tasks). There were 181 subjects who com-
pleted the study. Suppose we use the guthors® scoring method 1o assess the status of another aroip
of |81 subjects relative w their activities of dadly living, Let us assume that the fallowing results
wire obininel.

Otbserved Expected Ohserved Expecied
X Frequency X Frequeney X Fregquency ¥ Frequency
& e 11601 T 4 2.95
| 27 JH2 by 3 [.03
2 14 43,15 9 = .32
3 i 40,27 I 3 (.0
4 I 25.18 Il d (02
3 7 15.79 12 or more 13 EXR]
i 5 T.37

Source: Hypothetical data based o procedure reported by Amy L, Bvers, Heather Alloge,
Phosmas M. Gill, and Poter N, Pedussi, “Application of Negative Binominl Modeling for
Discrete Ouncomes; A Case Study in Aging Research,” Jowrnud of Clirical Epideminfoe s 56
(2030, 350-504

Test the null hypothesis that these data were drawn from a Poisson distribotion with 4 = 2.8, L
a= 1.

The following are the numibers of o particular orgamsm found in 100 samples of water from
TR

Mumber of Orgunisms Number of Organisms

per Sampli Freguency per Sample Freguency
( |5 4 3

I 30 3 -+

2 23 0 |

3 2 7 L4
Total 10

Test the null hypathesis that these data were drawn from a Poisson distribulion. Determing the i
value Foi (his tesi.
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1236 A research team conducted a survey in which the subjects were adult siokers, Each siheet |
sample of 200 was asked 10 indicate the extent 1o which he or she agreed with the statements
wonild like to quit smoking™ The results were bs follows:

Respanse: atrongly agree Apres Disagree  Strongly Disagree
Numiber
Responding: 12 Al O 5

Can one conclude on the basis of these distn that, in the sampled popolation, epinions e
equally distributed over the four levels of agreement” Lot the Protuhility of commtting g wpe
error be 05 and find the p value. !

12.4 TESTS OF INDEPENDENCE
“

Another, and perhaps the most frequent, use of the chi-square distribution is 10 fes
null hypothesis that two criteria of classification, when applied to the same set of
ties, are independent. We say that two eriteria of classification ure independent
distribution of one criterion is the same no matter what the distribution of the ather e
terion. For example, if sociveconomic status and area of residence of the inhatitirs o
weertain city are independent, we would expect 1o find the same proportion of familis
in the low, medium, and high sociceconomic groups in all areas of the city,

The Contingency Table The classification, according to two critenia, of 1§
al’ entities, say, people, can he shown by o table in which the r rows represent they
1ous levels of one criterion of classification and the ¢ columns represent the: var
levels of the second criterion. Such a table is gencrally called o entingency tabl
classification according 1o two criteria of a finite population of entities is shiyn i)
Table 12.4.1, b
We will be interested in testing the null hypothesis that in the population the Tl
ertterii of classification are independent. If the hypothesis i rejected, we will con

TABLE 12.4.1 Two-Way Classification of a Finite
Population of Entities

Second

Criterion of First Criterion of Ciassification Level

Classification

Lewvel 1 2 3 e c Total
Ny Ny Ny ' Ny My,

2 My sz My ’ Mo l"'-";-.

3 |I|"""11 Nz'.: N:IJ o N_n- "'5,3

r Ir"||Ir1 Nr.’! Nr3 L N’-

Tatal My M My e
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TABLE 12.4.2 Two-Way Classification of a Sample

of Entities

Second

Criterion of First Criterion of Classification Level

Classification

Lavel 1 2 3 sy I Total
iy M M : e iy,

2 iy flaz figg ks M2y fiy,

3 3 Mz My ' My, i,

r M Mz Mea 4 L P My,

Total (o g .3 e - n

thut the two criteria of classification are not independent. A sample of size n will be drawn
from the population of entities. and the frequency of oceurrence of entities in the sample
corresponding to the cells formed by the intersections of the rows and columns of Table
12.4.1 along with the marginal totals will be displayed in a table such as Table 12.4.2,

Calculating the Expected Frequencies The expected frequency, under
the null hypothesis that the two criteria of classification are independent, is caleulated
for cuch cell,

We learned in Chapter 3 (see Equation 3.4.4) that if two events are independent,
the probability of their joint occurrence is equal to the product of their individual prob-
abilities. Under the assumption of independence, for example, we compute the probahil-
ity that one of the i subjects represented in Table 12.4.2 will be counted in Row | and
Column | of the table ithat is, in Cell 11) by multiplying the probability that the sub-
Jeet will be counted in Row | by the probability that the subject will be counted in Col-
umn L. In the notation of the table. the desired caleulation is

(2)(2)

To obtain the expected frequency for Cell 11, we multiply this probability by the total
number of subjects, n. That is, the expected frequency for Cell 11 is given by

()2

Since the i in one of the denominators cancels into numerator », this expression reduces o

ﬂ:z_t]l[n.,]

i

In general, then, we see that to obtain the expected frequency for a given cell, we mul-
tiply the total of the row in which the cell is located by the total of the column in which
the cell is located and divide the product by the grand toral.
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Observed Versus Expected Frequencies 7. expected frequencies and
observed frequencies are compared. If the discrepancy is sutficiently small, the pull hypoth:
esis Is tenable: If the discrepancy is sufficiently large, the null hypothesis is rejected, and
we conclude that the two criteria of classification are o mdependent. The decision as i
whether the discrepuncy between nhserved and expected frequencics is sufficiently lage
o cause rejection of H, will be made on the busis of the size of the quaitity compuled
when we use Equation 1224, where ¢ 4 and £ refor, respectively, 1o the observed and
expected frequencies in the cells of Table 1242, 1t would be more logical 1o desionate the.
observed and expected frequencies in these cells by 0, and £, bt to keep the notation
simple and to avoid the introduction of anather formulin. we have elected 1o use the sime
pler notation, 1o will by helplul o think of the cells ue being numbered from | o & where
I refers 1o Cell 11 and & refers w Cell #e I ean beshown thar X7 as detined in this -
er is distribuned approximaely as v with (r — | e 1} degrees of freedom when the
null hypothesis is true. If the computed value of X2 js equal o or larger than the RATIETE
vilue of x~ for some a. the null hypothesis is rejected at the o level of significance. Ttu
hypothesis testing procedure is illusirated with the fallowing example:

EXAMPLE 12.4.1

In 1992 the LS, Public Hewlth Serviee

and the Centers for Disense Coniral and
vention recommended thar all wornen

of childbearing jge consume 400 mg of folie s
daily o reduce the risk of having a pregnancy thit is affected by a newral wbe de

such s spima bifida or anencephaly. In o study by Stepanuk et al, (A-3), 6Y3 preg
Women called a teritology mformation service about their use of falic aeid supplem
tution. The researchers wished to determine if preconceptional use of folic acid and
are independent. The datg dppear g Table 12,43,

Solution:
. Data. See Table 12.4.3.
2. Assumptions. We assume that the sample available for analvsis is |
wlent o a simple random sample drawn from the populition of interes).

TABLE 12.4.3 Race of Pregnant Caller and Use of

Folic Acid
Preconceptional Use of Folic Acid
Yes Mo Total
White 280 2499 553
Black 15 41 56
Cther 7 14 21
Total 252 354 836

Source. Kathleen M Stepanuk, Jarge E Toloss, Dawnesty Lewis,
Victotia Meyers, Cynihia Foyds, dian Carlas Saogal, and Bon Libsrezi,
“Folic Ackdl Supplementation Use Among Wamén Wha Contact a Tersal-
ogy Intormation Sarvice,” Amenszn Journal of Chstewics and

Gynaoal
gy TET 12007], 964-957
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1. Hypotheses.

Hy: Race and preconceptional use of Tolic acid are independent.
H . The two variables are not independent.

Let ee = 053,
4. Test statistic, The test statistic is

14

giE
5 "'\l- [rjl = Er:' -|
e=3"F

=i ot | J

5. Distribution of test statistic. When Hy is true, X T s distributed ap-
proximately as ¥ with (r = e = 1) = {3 - 12 = 1) =(2)1)=
2 degrees of freedom.

6. Decision rule, Reject He db the computed value of X s equal 1o or
greater than 3.991.

7. Caleulation of test statistic. The expected frequency for the first cell 15
(559 » 282)/636 = 147 56, The other expected frequencies are culcus
lated in @ similar manner, Observed and expected frequencies are dis-
played in Table 12.4.4, From the observed and expected frequencies we
My compute

i3 L[ 1@ = "-"'1]:-'
Sl
(260 — 247.86)° (299 - 31.14)° (14 — 11.69)°
=——mse ~ s T s
= 50461 + ATI6R + o0+ 45647 = 208960

§. Statistical decision. We reject Hy, since 9.08960 = 5.991.

9. Conclusion. We conclude thut Hy is fulse, and that there 1s a relationship
hetween race and preconceptional use of folic acid.
10, p value. Since 7.378 < g.08060 < 9,210,001 = p = (23

TABLE 12.4.4 Observed and Expected Frequencies
for Example 12.4.1

Preconceptional Use of Folic Acid

Yes Mo Total
Yhite 760 (24786) 799 (311.14) 553
Black 15 {24.83) a1 {3137 56
Other 7 (9.3%) 14 {11.63) 21
Total 282 354 636
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Computer Analysis The computer may be used 1o ady antage in caleuluting §*
for tests of independence and tests of homogeneiry. Figure 12.4.1 shows the procedus’
and printout for Example 1241 when the MINITAB program for computing X° fum
contingency tables is used. The data were entered into MINITAB Columns | and 2. g
responding to the columns of Table 12.4.3.
We may use SAS™ 1o obtain an analysis and printout of contingency table dasby
using the PROC FREQ statement, Figure 12.4.2 shows a partial SAS” printout refiecting
the analysis of the data of Example 12.4.1. :

Dialog Box: Session command:
Stat » Tables » Chi-square Test MTB = CHISQUARE C1-03
Type €/1-€2 in Columns conthining the table,
Chck OK.
Output;
Chi-Square Test: C1, C2
Expected counts are printed below observed counts
il [, Total
1 260 299 559
247 .86 311.14
2 15 d1 56
24083 2 51 AR A
3 7 14 21
L A 1 11.69
Total 282 354 L
Chi-8g = Q.595% + 0.474 4
31.882 s 3,100 <
0.574 + 0,457 = 8.091
DE = 2, P¥alue = G.011

FIGURE 12.4.1 MINITAB procedure and output for chi-square analysis of data inTable 1244
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The S5as

Sample Size =

Svebem

The FRED Procedure

636

Table of race by folic
race ' folic
Fregquency
Parcent
Row Pot
Cal Pct N Tes Total
Black 4] 15 56
6.45 2.386 .8l
73,21 267
11.58 B.3
Othear 14 7 21
2.20 1.14 3.30
66,67 33.323
3.95 2,48
White 2549 280 559
4a7:01 40,88 ‘B7.H9
53,493 46,51
B4.458 az.z0
Total 354 282 636
55,66 44,34 100,00
Statisties for Table of race by folie
Statiatic nFE Value Prob
Chi-Sguare 2 9.0913 L0108
Likelihood Ratio Chi-Square 2 g.4808 0.0087
Mantel-Haenszel Chi-Sguare 1 B8.3923 0., G027
Fhi Coefficient 0.1196
Contingency Coefficient 0.1187
Cramer's W 0.:1196

FIGURE 12.4.2 Partial SAS5" printout for the chi-squars analysis of the data from

Example 2.4,
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Note that the SAS™ printout shows. in each eell, the percentage that cell fraquency.
is of its row total. its column total, and the grand total. Also shown. for each row and
column total. is the percentage that the total is of the grand wtal. In addition 1o the §*
statistic, SAS™ gives the value of several other statisties that may be computed from cog-
tingency table data. One of these. the Mantel-Haensze) chi-square statistic, will he dis-
cussed in a later section of this chapter.

Small Expected Frequencies The problem of smill expected frequencies
discussed in the previous section may be encountered when analyzing the dota of cons
tingency tables. Although there is a lack of consensus on how to handle this probe
lem, many authors currently follow the rule given by Cochran (5), He suggests tha
for contingency tables with more than | degree of freedom a minimum expeclition
of 1 is allowable if no more than 20 percent of the cells have expected frequencies
of less than 5. To meet this rule, adjacent rows andfor adjacent columns may be compe
bined when to do so is logical in light of other considerations. If X2 is based on less
than 30 degrees of freedom, expected frequencies as small as 2 can he tolerated, We:
il not experience the problem of small expected frequencies in Example (24,1, sinee
they were ull greater than 3.

The 2 x 2 Contingency Table Sometimes cach of two criteriy of classificgs:
tion muy be broken down into only two categories. or levels, When data are cri
classified in this manner. the result is a contingeney 1able consisting of two rows g
two columns. Such 4 table is commonly referred 10 us o 2 = 2 tble, The value of,
miy be computed by first ealeulating the expected cell frequencies in the manner dis
cussed above. In the case of a 2 % 2 contingency table, however. X2 may he caleule
by the following shortewt formula:

. n{ad = be')?

h [ —-:'][IIJ =+ :4’][:1?!:]“' + E]

where o, b, ¢, und d are the observed cell frequencies as shown in Table 1243, Whg
we apply the (r — 1){e — 1] rule for finding degrees of freedom to 3 2 x 2 table, the
result is | degree of freedom. Let us illusteate this with an exumple.

TABLE 12.45 A 2 x 2 Contingency Table

First Criterion of Classification
Second Criterion

of Classification 1 2 Total
1 & b a+ b
2 o o o4 d

Total 8+ b+ o f
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EXAMPLE 12.4.2

According to Silver and Aiello (A-4), falls are of major concern ainong polio survivors.
Researchers wanted 1o determine the impact of a fall on lifestyle changes, Table 12.4.6
shows the results of a study of 233 polio survivors on whether fear of Lalling resulted in
lifestyle changes,

Solution:
L. Data. From the information given we may construct the 2 % 2 contin-
gency table displaved as Table 12.5.6.
2. Assumptions, We assume that the sumple is equivalent to a simple ran-
danm sample.

3. Hypotheses,

Hy: Fall status and lifestyle change because ol fear of falling are
independent,
Hy: The two varables are not independent.
Let o = 05,
4. Test statistic. The west swtistic is

3. Distribution of test statistic. When M, is true, X7 s distibuted PP i-
mately as ¥ with {r = I){e— 13 =(2 = 1}%2 = 13 = {(D)(1) = |
degree of freedom,

6. Decision rule. Reject H, il the computed value of X7 is equal to or
areater than 3841,

7. Calculation of test statistic. By Equation 12.4.1 we compute

233((131)(36) — (52)(14)]°

g 1_”-_} AR 317391
(145)(88)(183)(50)

8. Statistical decision. We reject M, since 31,739 = 3.5841,

TABLE 12.4.6 Contingency Table for the Data of Example 12.4.2

Made Lifestyle Changes Because of Fear of Falling

Yas Mo Total
Fallars 131 Rz 183
Monfallars 14 3B 50
Tatal 145 BE 233

Source: J. K. Silver and 0. [: Aiefla, "Palia Survivers: Falls and Subsseguent Injuries,”
Armanican Journg! of Physical Madicing and Rehalilitation, 81 |2002), B87-570,
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9. Conclusion. We conclude that H, is false, and that there 15 a relationship
between experiencing a fall and changing one’s lifestyle because of fearof
falling,

10. p value. Since 31.7391 > 7.879. p < .005. ]

Small Expected Frequencies The problems of how to handle small
expected frequencies and small total sample sizes may arise i the analysis of 2 %2
contingency tables. Cochran (5) suggests that the x” test should not be used if n < 2
ar if 200 =< 5 < 40 and any expected frequency is less than 5. When r = 40, an expecied
cell frequency as small as 1 can be tolerated.

Yates's Correction The observed frequencies in o contingency table are discrate
and thereby give rise 10 a discrete statistic, X°, which is approximated by the y* distrs
bution, which is continuous. Yates (6) in 1934 proposed a procedure for correcting for
this in the case of 2 % 2 wables. The correction, as shown in Equation 12.4.2, consisty
of subtracting half the total number of observations from the absolute value of the quik
tity ad — he before squaring. That is,

: _ nilad = bel — Su)?
correstod I:‘.{]‘ s {'_:'l:h —_ “l IF-[“ + If_:'[i: L] III:I

e (124 Ejﬁ

It is generally agreed that no correction is necessary for larger contingency bl 5
Although Yates's correction for 2 % 2 ables has been used extensively i the past, moe:
recent investigators have guestioned its use. As a result, some practitioners recomngs I
agarmst s use.

Wi may. as a matter of interest, apply the correction 1o our current example. Us
Equation 12.4.2 and the data from Table 12.4.6, we may compute

233[|(131)(36) — (52)(14)] = .5(233) ]}
(143)(88)(183)(50)

a2

= 299118

dramatic.

Tests of Independence: Characteristics The characteristics of & i
square test of independence that distinguish it from other chi-square tests are s followss

. A single sample is selected from a population of interest, and the subjects or objeds
are cross-classifed on the basis of the two variables of interest.
2. The rationale for calculating expected cell frequencies is based on the probabii
law, which states that if two events (here the two etiteria of classification) ane mde
pendent, the probability of their joint occurrence 15 equal 1o the product of e
individual probabilities.
3. The hypotheses and conclusions are stated in terms of the independence (or 1a
of independence) of two variables.
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EXERCISES

124:1

12.4.2

In the exercises that follow perform the rest at the mdicated level of significance und determine
the f value,

In the stedy by Silver and Aiello (A=) ¢ited in Example 1242, a secondury objective wis 1o
determine if the frequency of falls was independent of wheelchair use, The following table gives
the data for falls und wheelchair use among the sabjects of the sudy.

Wheelchair Use

Wies Moy
Fallers 2 121 Source: LK Silver amd 10 1. Adello, “Polie Sarsivars: Fulls i
Monfallers 15 32 Subsequem Injurics,” Amevican Journal of Plysical Modiciie did

Rehebdlitarion, 81 (20025, 367570,

Do these dota provide safficient evidence o warrant the conclusion that wheelchair vse and talling
wre reloed? Let o = 05,

sternal surgical site infection (881 after coronary artery bypass graft sursery i & complication
that increases patient morbidity and costs for patients, pavers, mnd the bealth care systens. Seaal
and Anderson (A-5) performed a study that examined two types of préoperative skin preparition
helore performing open heart surgery. These two preparations used agueous iodine and insolulle
iodine with the following resules.

Comparison of Agueons and Insoluble Preps

Prep Group Infected Mot Infected
Agueous odine 4 a4
Insaluble jodine 4 07

Source; Cynthin G, Segal und Jaegueline 1. Anderson, “Preoperiutive Skin
Preparation of Cordine Patiemis” AGEN Jourmad, 76 (2002), £33 =527,

Doy these data provide sufticient evidence at the o = 05 level 1 justify the conclusion that the
type of skin preparation and infection are relaged?

The side effects of nonsteroidal antiinflammatory drugs (NSAIDs) include problemns mvalving
peptic uleeration, renal function, and liver disease, In 1996, the American College of Bhewma-
tology issued and disseminated guidelines recommending baseling tests (CBC. hepatic panel,
and renal tesis) when prescribing NSAIDs, A study was conducted by Rothenbierg and Holeomb
(A-b) 1o determine If physicians twking part in o national datubase of computerized medical
vecords performed the recommended baseline tests when preseribing NSAIDS, The roscarchers
classified physicians in the study imo four calegories—those practicing in internal medicine.
Famly practice, academic family practice, and multispeciality groups. The data appear in the
Following table,
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1244

1246

Performed Baseling Tests

Practice Type Yes BT

e R I 7 3
IEILT.IIM 1|1I’.d.!||.“'|.3 294 _H"‘ Souree; Ralph Rathenberz aml
Family practice 98 2862 Jahn P Holeamb, “Guideline
Academic family practice a0 3064 i Moninoring of NAIDs: Wha
Iultispeciably groups 203 2452 Listened?.” doapraal of Clinical

Rfemaiefogy, 6 (HI00), 238263

Do the data above provide sufficient evidence for us to conclude that ype of practice and per-
formance of baseline lests are related? Use o = 00

Boles and Johnson, (A-7) examined the beliefs held by adofescents regarding smoking and weight:
Respondents characterized their weight into three categories: underweight, overweight. or appro-
priate, Smoking status was categorized pecording to the answer to the guestion, "Do you cumently
cmoke, meaning ene or more cigarettes per day ™" The following tble shows the results of a tele
phone study of sdoleseents in the age group 12-17.

Smoking
Yes No
Underweight 17 gy
Ohverweight 25 (42 Sowrce: Sharon M, Boles and Purick 1. Johnson, “Cender,
Appropriate of Bl Weight Concems, and Adolescent Smoking,” Sowrmal of Addictie

Pilseesesn, 200 (20005, 5=14

Do the date provide sufficient evidence o suggist that werght perception and smoking status ane
refated in adoléseents? & = 05

A sample of 500 college students participated in a study designed to evaluate the level of college st
denis” knowledge of a cenain group of common discases. The following table shows the students el
sificd by major field of study and level of knowledge of the group of discases:

Knowledge of

Diseases
Major LT Poar Tuital
Premedical 31 i 122
Oither 14 359 TR
Tistal 30 A50) 00

D thesie duta suzgest thar there s a relationship between knowledge of the group of disesses and
major field of study of the college studemts from which the present sample was drawn? Lt
g = 5,

The following table shows the results of o survey in which the subjects were a sample of 300
adults residing in @ certain metropolitan aren, Each subject was asked to indicate which of three
policics they favored with respect 1o smoking in public places,
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Policy Favored

Smuking

Hig st M Allowed in il

Education Restrictions Dhesignated Smoking Mk

Livel on Smoking Aress Only at All {hpinion Tatal
Crllege gradunte 5 44 2 3 75
High-school graduate 15 1) 6 5 4]
Grde-schonl graduate I'5 =1 10 I 75
Tl 15 | 84 k] I 3

Cun one conclude from these data that, in the sumpled population, there is & relationship between
level of cducmion and attitude toward smoking in public places? Let a0 = 3

12,5 TESTS OF HOMOGENEITY

A charscteristic of the examples and exercises presented in the last section is that, i each
case, the total sumple was assumed o have been drawn belore the entities were classified
according to the tweo criteria of clussification. That is, the observed number of entities
falling into each cell was determined after the sample was drawn. As o result, the row and
column totals are chance quantities not under the control of the investigator. We think of
the sample drawn under these conditions as  single sample drawn from a single popula-
tion. On occasion. however. either row or column totals may be under the control ol the
investigator: that is. the investigator may specify that independent sumples be drawn from
each of several populations. Tn this case. one set of marginal totals is said © bee fived, while
the other set, cormesponding 1o the criterion of classification applied to the samples, is ron-
dent. The former procedore, as we have seen, leads 1o a chi-square lest of independence.
The lateer situation leads o a chi-square fest of homogeneiry, The two situations ool only
involve different sampling procedures: they lead to different questions and null hypothe-
ses, The test of independence is concerned with the question: Are the two criteria of clas.
sification independent? The homogeneity test is concerned with the question: Are the sam-
ples drawn from populations that are homageneous with respect 1o some criterion ol
classification? In the later case the null hypothesis states that the samples are drawn from
the same population, Despite these differences in concept and sampling procedure, the two
tests are mathematically identical, as we see when we consider the following example,

Calculating Expected Frequencies FEither the row categories or the column
cafegorics may represent the different populations from which the samples are drawn, I
ot example, three populations are sampled, they may be designated as populations 1, 2, and
3, in which case these labels may serve as either row or colurn headings. 1f the variable
ol interest has three catecories, say. A, B, and C. these labels may serve as headings. for
rows oF columns, whichever is not used for the populations. If we use notation similar to
that adopted for Table 12,42, the contingency table for this situation, with columns used to
represent the populations, is shown as Table 12.5.1. Before computing our test slafistic wi
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TABLE 12.5.1 A Contingency Table for Data for a
Chi-Square Test of Homogeneity

Population
Variable Category 1 2 3 Total
A fay Maz Rz fa,
a8 i Ngs s ng,
43 Ny A s e
Total sy fig N3 n

need expected frequencies for each of the cells in Table 12.5.1. If the populations are indeed
homogeneous, or, equivalently, if the samples are all drawn from the same populution,
respect W the categories A, B, and C, our best estimate of the proportion in the combi
population who belong to category A is n A n. By the samie token, if the three |;-upu1mj|':r_t§
ire homogeneous, we interpret this probability as applying to each ol the populations ind
vidually. For example, under the null hypothesis, n 4. is our best estimate of the profih
thit a stibject picked at random from the combined population will belong to category 4
We would-expect, then, o find i (115 /n) of those in the sample from population 1 1o be ng
to category A, m (s, /n) of those in the sample from population 2 1o belong 1o category A,
and n 1{n, fn) of those in the sample from population 3 to belong 10 category A. These cil
culations vield the expected frequencies for the first row of Table 12.5.]. Similar reasonng:
and caleulations yield the expected frequencies for the other two rows.

We see ugain that the shorteut procedure of multiplying appropriate marginal ol
and dividing by the grand total vields the expected frequencies for the cells,

From the data in Table 12.5.1 we compute the lollowing est satistic:

Ay
J

[

= 5]
;{_;_ =

EXAMPLE 12.5.1

Narcalepsy is a disease involving disturbances of the sleep-wake cycle. Members of fhe.
German Migraine and Headache Society (A-8) studied the relationship between migra
headaches in 96 subjects diagnosed with narcolepsy and 96 healthy controls. The. resulis
are shown in Table 12.5.2. We wish 1o know if we may conclude, on the basis of these

TABLE 12.5.2 Frequency of Migraine Headaches
by Marcolepsy Status

Reported Migraine Headaches

Yes Mo Total
MNarcoleptic subjacts i 75 0§
Healthy controls 149 77 UG Saurces The OMG Study Group,
=2 “Migraing and Idiopsathic
Total a0 1R2 192 Marcalepsy—A Cage-Control Stidy,

Cephalagra, 23 [2003), 786-788,
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data, that the narcolepsy population and healthy populations represcnted hy the samples
are not homogeneous with respect 1o migraine freguency.

Solution:
1. Data. See Table 12.53.2.
2. Assumptions. We assume that we have o simple rundom sample from
each of the two populations of interest.
3. Hypotheses.
Hy: The two populations are homogeneous with respect fo migraine
frecuency.
H.: The two populations are not homogencous with respect 10
magraing frequency.
Let e = DA,
4. Test statistic. The test statistic 1
X==E{lh— EI}:.".I'L'_I!
5. Distribution of test statistic. 11 H,, is true, X is distributed approxi-
mately as y* with (2 = 1}(2 = 1) = (13(1) = | degree of {reedom.
6. Decision rule. Reject Hy if the computed value of X7 is equal o or
ereater than 3.841.
7. Caleulation of test statistic. The MINITAB output is shown in Figure
25k
Chi-Square Test
Expeckted counts are printed below chserved counts
Rows: Narcolepsy Columns: Migraine
Mo Yes Aall
B T 19 95
76.00 20.00 9g. 00
Yag T8 21 o9&
Te.00 20.00 G600
ril 152 40 122
152.00 40,80 122.00
chi-square = 0:126, DF = 1, P-Value = 0.722

FIGURE 12.5.1

MINITAB output for Example 12.5.1,



626 CHAPTER 12 ANALYSIS OF FREQUENCY DATA: AN INTRODUCTION TO THE CHI-SQUARE DISTRIBUTION

8. Statistical decision. Since _126:1s less than the critical value of 3,841, we
are unable w reject the null hvpothesis.

9. Conclusion. We conclude that the two populations may be homogeneons
with respect to migraine frequency,

10. p value. From the MINITAB output we see that p = 722, "

Small Expected Frequencies The rules for small expected frequencics given
in the previous section are applicable when carrying out # test of homogeneity,
In summary, the chi-square test of homogenenty has the following characieristics:

L. Two or more populations are identified i advance, and an independent sample is
dravwn from each.

[E¥]

Sample subjects or ohjects are placed in appropriate categories of the variable of
interest,

w

The caleulation of expected cell Trequencies i based on the rationide that if the p{:lpn
ulutions are homogeneous as stated in the null hypothesis, the best cslimate uhl};
probability that 4 subject or object will fall into a particular category of the vanable
of interest can be obtained by pooling the sample data.

4. The hypotheses and conclusions are stated in terms of homogeneity (with rﬁpﬁ;{z
to the vanable of interest) of populations.

Test of Homogeneity and Hy: p; = p,  The chi-square test of homogenss
ity for the two-sample case provides-an alternative method for testing the null hypothes
sis that two population praportions are equal, In Section 7.6, it will be recalled, m
learned 1 test Hy: gy = pooagainst Hy:py # pa by means of the statistic

_ F’ﬂ' =1 f.?: = f-"}u
[p(V=p) B - p)
Hl'l 1y - o

where pois oblained by pooling the data of the two independent samples available f
analysis, ]

Suppose, for example. that in a test of My py = py against Ha: py # ps, the san
ple data were as follows: i) = 100, p; = 60 0. = 120, j, = 40, When we F:n:-ulL
sample data we have \
O00T00) + .40(120) 108

— = LATRT
P 00+ 120 2o = 409
and
60— A0 o
- = AiEAE
[TA909)( 5001) . (49007 50017
y L0 120

which is significam at the .05 level since it is greater than the eritical value of 106
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[f we wish to test the same hypothesis using the chi-square approach, our contin-
gency table will be

Characteristic Present

Sample Yes No Total

i ) A i8]
2 45 72 120
Testaal 108 112 220

By Equation 12.4.1 we compule

230( (601(72) — (40)(48)]°
= _l[fﬂ?i -l:'_”{_ﬂ ]l_ = " 732
(108)(112)(100)(120)

which is significant at the .03 level because it is greater than the eritical value ol
31841, We see, therefore, that we reach the same conelusion by both methods. This
is not surprising because, us explained in Section 12.2. ¥ = =5 We note that
§ 7307 = (2.95469)7 and that 3.841 = (1.96)"

EXERCISES

In the exercises that follow perform the test at ihe indicated level of signilicance amd - determiine
the pr vihoe

Refer 1o the study by Carter ¢t al. [ A0y, who mvestigated the effect of age a onset of bipolar s~
arder on the course of the illness, One ol thie varables studied was subjects’ [mily Tistory. Table
141 shows the frequency of @ family history of mood disorders in the two groups of interest
carly upe at vnser (E8 years o younger) s later age ol onstl Clater than b8 years)

Family History of Mood

Disorders Early = 18(E) Later —~ I8(L) Tartal
Megative (A) 28 a5 4
Bipolar disorder (5} 14 38 51
Unipolar (C) 41 44 A
Unipelar and bipolar (1) 53 sl 113
Tutal |41 177 ils

Source: Tasta [, Carter. Envanucha Mundo, Sapar ¥, Parkh, and Jimes [ Kennedy,
“Early Age ot Chriset as 3 Risk Factor for Poor Oyteom of Wipolar Disorder”™ Joeeeal
af Payefiane Rogearch, 37 (2003), 207305,

Can we conclude on the busis of these dat that sithjects 14 or younger differ from subjeces older
than 1% with respect to family histaries of mood disorders? Let a = A5
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12.5.2  Coughlin et al. (A-10) examined breast and cervical ‘screening practices of Hispanic and nogs

12.5.3

1254

Hispanic. women in counties that approximate the U.S. southern border region. The study used
data from the Behavioral Risk Factor Surveillance Svstem surveys of adults ages 15 WEALS [T
older conducted in 1999 and 2000. The following tuble shows the number of observations of
Hispanie and non-Hispanic women who had received o mammogeam in the past 2 FEES RS-
classified by marital status.

Marital Status Hispanic Non-Hispanic Total
Currently married L [EL {1xir)
Divorced or separated 130 320 454
Withowed 8R 42 49
Mover married or living as 4] us | 3t

an unnerried couple

Tenal 378 | 56 2142

Sarce: Seven 5, Coughling Beberr 1. Uhler, Thomas Richasds, amd Katherme
ML Wilson, “Breast and Cervieal Cancer Sereening Practices Among Hispanie
amcl Mon-Hispanic Women Residing Near the United Stares-Mexion Bonder,
FUSth- N0, Fammily eoef Commienily Hewltle, 26, (20035 1301349,

Wi wish o know if we may conclude on the basis of these duta thal mirital status and efhnicity
eHispanmic and non-Hispanic) in border counties of the southern Unifed States are mil omiees
nenus. Leta = 03,

Swior el al. (A-11) examined the effectiveness of cardiopulmonary resuscitation (CPR) training in
ple over 53 years of uge. They compared the skill retention rates of subjects in this age group wha
completed u course in traditons] CPR instruction with those whe reeeived chest-compressian-ofl
-.'.'I.L'dlmmlnmnur:,- resuscitien (CC-CPE), lnl.']l.'.‘pe:ldr_'rbl croups were tested 3 onths altir tr i
Among the 27 subjects receiving raditional CPR, 12 were rated as competent. Tn the CC-CPR gron
15 out ol 29 were rated competent. Do these data provide sufficient evidence for us 1o conclgds i
the two popolations are not homaogensous with respect o competency mting 3 monchs afier teain
Let e = {05,

In an air pallution study, a random sample of 200 households was selected from each of o
minities, A respondent in cach howsehold was asked whether or not anvone in the household
bothered by air pollution. The responses were s follows:

Any Member of Household
Bothered by Air Pollution®?

Community Yis No Total
I 43 | B 2003
] &l 19 2008
Tzl 124 276 A

Can the researchers conclude thar the two communities differ with respeot to the 't'alriabb.*;_l
inberestT Let o = 05
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