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USING THE REGRESSION EQUATION

If the results of the evaluation of the sample regression equation indicate that there is a
relationship between the two variables of interest, we can pul the regression equation to
practical use. There are two ways in which the ¢quation can be used. It can be used to
predict what value ¥ is likely to ussume given @ particular value of X. When the nor-
mality assumption of Section Y.2 15 met. a prediction interval for this predicied value of
¥ may be constructed.

We may also use the regression equation to estimate the mean of the subpopu-
lation of ¥ values assumed to exist at any particular value of X Again. il the assump-
tion of normially distributed populations holds. o confidence interval for this parame-
ter may he constructed. The predicted value of ¥ and the point estimale ol the mean
of the subpopulation of ¥ will be numerically equivalent for any particular value
of X but, as we will see. the prediction interval will be wider than the conlidence
interval,

Predicting Y for a Given X If it is hnown, or if we are willing 0 assume
that the assumptions of Section 2.2 are met, and when rrm is unknown, then the
100{ 1 — e) percemt prediction interval for ¥ is given by
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where x, is the particular value of xat which we wish o obtain a prediction mterval for
¥ und the degrees of freedom used in selecting +are n — 2.

Estimating the Mean of Y for a Given X The 100(1 — «] percent
confidence interval for g, when o3, is unknown, is given by
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We use MINITAB to illustrate, for a specified value of X, the calculation of & 95 per-
cent confidence interval for the mean of ¥ and a 95 percent prediction interval for an
mdividual ¥ measurement,

Suppose, for our present example. we wish to make predictions and estimates about
AT for a waist circumference of 100 em. In the regression dialog box click on “Options.”
Enter 100 in the “Prediction interval for new observations™ box. Click on “Confidence
limits.” and click on “Prediction limits,”

We abtain the following output:

Fit Srlev. Fit 9500 .1 us 0% PRI
124 40 1.6 (12258, 137230 (6393, 195.87)
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We interpret the 95 percent confidence interval (C.1) as follows.

I we repeatedly drew samples from our population of men. performed a r
sion analysis, and estimated Huh=1on With a similarly constructed corfidenes ing
about 95 percent of such intervals would include the mean amount of deep abdy
AT tor the population. For this reason we ate 95 percent confident that the singlea
vill constructed contains the population mean and that it is simiew here between 122
and |37 .23,

Our interpretation of a prediction interval (PL) is similar 1o the interpretation of g
confidence mterval. If we repeatedly druw samples, do 4 regression analvsis, and
struct prediction intervals for men who have » waist circumference of 100 cim, aboy
percent of them will include the mun’s deep abdominal AT value, This is the preibiily
tie interpretation. The practical interpretation is thal we are 95 percent confident thal s
min who has a widst circumference of 100 ¢m Will have a deep abdomina AT am
somewhere between 63,93 and 19547 sLLre centimeters.

Simultaneous confidence nteryals and prediction intervals can be calculated for gl
possible poins along a fitted recression fine, Plotting lines through these poits will
provide a griaphical representation of these ntervals. Since the mean data point (X ¥}
always included in the regression equation, as illusteted by equations U.3.2 and
plots of the simultaneous intervals will always provide the best estimates at

Of the line und the error will increase toward the ends of the line,
that estimution within the bounds of the duty set. called interpoletion, is sceepuible, i
that estimation outside of the bounds of the data s, called extrapafation, is ot i
able since the pridiction error can be quite large. See Figure U5.1,

Figure 9.5.2 contains u partial printout of the SAS™ simple linear regression analye
sis of the data of Example 9.3 ],

ihe midd
This tllustrates the [

Resistant Line Frequently, duta sers tivs

tilable for analvsis by linear regressia
technigues contain one or more “tnmusnal™

observations: that is, values of ¢ o gy,
bath, may be cither considerably larger or considerably smaller than most of the oty
measurements, In the output of Figure 9.3.2. we see that the computer detected se
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FIGURE 9.5.1 Simultaneous confidence intervals (3] and pradiction intarvats [5) far the

data in Example 9.3.1.
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: _& HODELL
adent Variahle: ¥

yeis of Variance

Sum of HMean
OF Squares Square F Value Prob=F

1 237548516210 237548.51620 217,279 Q.0001
1 107 116581 .98602 10583, 28959
T el 108 354530 .50222

Root MSE 33.06453 R-sguare D.E700
Dep Mean 101 .82404 Adj BR-sg 0.6670
Iaih 32.45031

rameber Estimabes

Parameter Etandard T for HO:
Iariabie DF Estimate Error Parameter=0 Prob> |T|
il -215.981488 21.79627076 -9 209 Q.0anl
1 F.458859 0.23063205 14 740 0.0001

FIGURE 9.5.2 Partial printout of the computer analysis of the data given in Example 9.3.1,
using the SAS™ sofware package.

uniusual phservations in the waist circumference and deep abdominal AT data shown
in Tahle Y31,

The lesst-squares. method of fitting a stranght line o data is sensitive 10 unususl
observations, and the focation of the fitted line can be affected substantially by them:
Because of this characteristic of the least-squares method, the resulting least-squares line
15 saad 1o lack resistemee o the mfluence of unusual observalions, Several methods have
been devised for dealing with this problem, including one developed by John W, Tukey,
The resulting fine is vni’inur.ly referred (o as Thkeyv's fine und the resistant line.

Based on medians, which, as we have seen, are descriptive measures thal arg
themselves resistant to extreme values, the resistant line methodology is an exploratory
data analysis tool that enables the researcher 1o gquickly At o straight line o a set of
data consisting of paired x, v measurements. The technique involves partitioning, on
the busis of the independent variable, the sumple measurements into three groups ol
as near equal s1ze as possible: the smallest measurements. the largest measurements,
and those in between, The resistant line is the line fitted in such a way that there are
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|

Output;

Slops =

Dialog box:

Stat » EDA > Resistant Line

Type €2 in Response and ¢/ in Predictors.
Check Residuals and Fits, Click OK.

Resistant Line Fit: c2 versus C1

Session comman d:

MTE > Name €3 = "REST1* ca = 'FITS)
MTB = ELine 2 09 "REST] ’FI'E'EI':-
SR - MaxIterations 10

3.286% Level = -203.78E8 HalE-s)ope ratio = 0.5%0

EXERCISES

FIGURE 9.5.3 MINITAE resistant line procedure and output for the data of Table 831,

an equal number of values above and below it in buth the smuller roup and the: arpe
group. The resulting slope and Y-Intercept estimates are resistant to the effects of eitheg
extreme v values, extreme v values, or both. To illustrate the fitting of a resistant |
we use the data of Table 9,31 and M INITAB. The procedure and output are shown in
Figure 9.5.3, b

We see from the output in Figure 9.5.3 that the resistant line has o slope of 328
und 4 y-intercept of —203.7868. The half-slope ratia, shown in the Gutput as equad w 690,
i an indicator of the degree of linearity between x and A slope, called o half-slope, i
computed for each half of the sample datt, The rutio of the night hall-slope, by, and the
left half-slope, by, is equal 1o b/ by, If the relutionship between x and M s straight the
hali-slopes will be equal. and their ratio will be 1. A half-stope ratio that is ot close fo |1
indicates a Tack of linearity between 1 and W

The resistunt line methodology is discussed in more detail by Hartwig and Deari
(1), Johnstone and Velleman (25, MeNeil (3}, and Velleman and Hiwglin (4.

9.5.1
0.5.2
953
9.5.4

In cuch exercise refer 1o the dppropriate previous exercise and, for the: value of ¥ Indi
Lity construct the 95 percent confidence intervy
tion interval for ¥

a1

ol
1 for p, ind (b) construct the 95 percent predie

Refer ws Exercise 9.3.3 and let-X-= 30

Refer i Exercise 9.3.4 and let X

L.

Refer o Exercise 9.3.5 and let X

416,

Refer (o Exercise 9.3.6 and let X = 204,

Refer o Hxercise 9.3.7 and let X = 15,
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THE CORRELATION MODEL

In the classic regression modet, which has been the underlying model in our discussion up
to this point, only ¥, which has been called the dependent vuriable, is required 1o be ran-
dom. The variable X is defined as a fixed (nonrandom or mathematical) variable and is
referred to as the independent variable. Recall, also, that under this model observations are
trequently obtained by preselecting values of X and determining corresponding values of ¥,

When both ¥ and X are random variables, we have what is called the coreelation
todel. Typically. under the correlation model, sample observations are obtained by
selecting a random sample of the units of associarion (which may be persons. pluces,
animals, points in time, or any other element on which the 1wo measurements are taken)
and taking on each o measurement of X and a measurement of ¥ In this procedure. val-
tes of X are not preselected but oceur at random, depending on the unit of association
selected in the sample,

Although correlation analysis cannot be carried out meaningfully under the ¢las-
sie regression model, regression analysis ean be carried out under the correlation
maoded. Correlation involving two varables implies a co-relutionship between variables
that puts them on an equal footing and does not distinguish between them by refir-
ring to one as the dependent and the other as the independent variable, In fuct, in the
basic computational procedures, which are the same as for the regression model, we
miy fit 4 straight line 1o the data either by minimizing (v, — %)% or by minimizing
B(x, = ). In other words, we may do a regression of X on ¥ as well as o regres-
sion of ¥ on X. The fitted line in the two cases in general will be different, and a log-
el gquestion arises as 1o which line to fit,

If the objective is solely 1o obtain o measure of the strengih of the relationship
between the two variables, it does not matter which line is fitted, since the measure usu-
ally computed will be the same in either case. If, however, it is desired 1o use the (L
tion describing the relationship between the two variables for the purposes discussed in
the preceding sections. it does matter which line is fitted, The variable for which we wish
o estimate means or [0 make predictions should be treated as the dependent variahle:
that is. this variable should be regressed on the other variiable.

The Bivariate Normal Distribution Under the correlation model, X and
Y are assumed to vary together in what is called a joint distribution, IF this joint distri-
bution is 4 normal distribution, it is referred to as a fivariate normal distribution, Infer-
ences regarding this populition may be made based on the results of samples properly
drawn from it If; on the other hand, the form of the joint distribution is known 1o he
nannormal. or if the form is unknown and there is no justification for assuming normal-
ity, inferential procedures are invalid. although descriptive measures may be computed,

Correlation Assumptions The following assumptions must hold for infer-
ences about the population to be valid when sampling is from a bivariate distribution.
L. For each value of X there is a normally distributed subpopulation of ¥ values.

2. For cach value of ¥ there is o normally distributed subpopulation of X values,

3. The joim distribution of X and ¥ is a normal distribution called the bivariate nor-
mad disteibntionn,
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FIGURE 9.6.1 & bivariate normal distribution, (a) A bivariate normal distribution,
(Gl A cutaway showing normally distributed subpopulation of Vior given X (o A
cutaway showing normally distributed subpopulation of X for Qivan ¥

4. The subpopulations of ¥ values all have the same variance.

3. The subpopulations of ¥ values all have the same variance.

The bivariate normal distribution js represented graphically
illustration we see that if we slice the: moun

away reveals the corresponding normal
mound pasallel 1o X at some v
subpopulation of X

m Figure 9.6.1, In thig
d parallel to ¥ ar some value of X, the o
distribution of ¥ Similarly, a slice through the
alue of ¥ reveals the correspanding mormally distribts

9.7 THE CORRELATION COEFFICIENT
E

The bivariite normal distribution discussed in Section
M. py and g The first four are, respectively, the
cimed with the individual distributions, The othe

9.6 has five parameters, i
standard deviations and means TS
rparameter, o, is called the Populati
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FIGURE 9.7.1 Scarer diagrarm
forr = —,

carrelation coefficient and measures the strength of the |insar relutionship between X
angl §

The population correlation coefhicient is the positive vr negative square wor of
the population coefficient of determination previously discussed, and since the coclficient
of determination takes on valyes between 0 and 1 inclusive, fImay assmme any viloe
between — | and + . 1 # = I there is u perfect dircet linear correlation between the 1wo
vanables, while p = —j indicates perfect inverse linear correlation. If @ =1 the 1w
vartubles are not linedrly correluted., The sign of g will itlways be the same g5 the SEgn
OF By, the slope of the population regression line for X and K

The snmple correlation coeflicient, r, describes the linear relationship between the
sample abservations on two varigbles in the same way that p describes the: refationship
in 3 population, The sample correlation coefficient is the squire Toot of the sumple coef-
ficient of determination that wis defined earlier,

Figures 9.4.5() und 9.4.5(c), respe “tively, show typical sediter dingrams where
F0(rt = 0)and ¢ =+ (pF = I} Figure 9.7.1 shows a typical scatter dizgram
where r = —~ |,

We ure usually interested in knowing il we may conclude that p # 0, that s,
that X and ¥ are finearly correlated, Since P 18 usually unknown, we draw o random
sample from the population of interest, compute r. the estimate of p. and 1es
Hytp = 0 against the alternative o = 0. The procedure will be illustrated in the Fol-
lowing example.

EXAMPLE 9.7.1

The purpose of 4 study by Kwast-Rubben et al (A-T) was to analyze SOMtOsensory
evoked potentials (SEPs) g their interrelutions tollowing stimulation of digits I, 11,
and Vin the hand. The researchers wanted to establish reference eriteria in a control
population, Thus, healthy volunteers were recruited 1, or the study. In the future this infor-
mation could be quite valuahle i SEPs may provide a method o demonstrate functionyl
disturbances in patients with suspected cervieal root lesion who have N and sensory
sympioms. In the study. stimutlation below-pain-level intensity was applied 1o the fingers,
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Recordings of spinal responses were made with electrodes fixed by adhesive elee
cream to the subject’s skin. One of the relationships of interest was the coma
between a subject’s height (cm) and the peak spinal lateney (Cv) of the SEP T
for 155 measurements are shown in Tahle 0.7.1.

TABLE 9.7.1 Height and Spine SEP Measurements {Cv)
from Stimulation of Digit | for 155 Subjects Described
in Example 9.7.1

Height Cw Height Cy l Height Cw
145 14.4 68 i6.3 181 58
144 13.4 168 Th:3 T8 158
185 135 168 16.0 m 18.6
185 13.5 163 8.6 a8z 8.0
156 13.0 168 15.7 182 174
156 13.6 168 16.3 182 175
157 14.3 168 16.6 182 174
157 14.9 168 15,4 182 170
168 14.0 170 16.6 182 125
16E 4.0 170 16.0 182 18
160 15.4 170 170 184 18.4
150 14.7 170 16.4 184 185
161 18.5 17 16.5 184 127
1617 157 171 16,3 184 157
187 15.8 171 16.4 184 174
161 16.0 171 168.5 184 T84
167 14.6 172 176 185 8.0
161 15.2 172 16.8 185 19.6
162 15.2 172 10 187 129
1562 165 172 176 187 19,2
162 1720 173 123 187 178
162 4.7 173 16.8 187 8.3
163 16.0 174 155 188 1786
163 15.8 174 15.5 188 18.0
163 170 175 LA 188 2.0
163 15.% 175 16.6 185 18.8
163 14.6 175 16.8 180 18.3
163 15.6 175 174 180 18.8
163 14.6 176 176 190 18.8
164 1240 175 16.8 180 19.2
164 165.3 175 16.6 19 185
164 16.0 1756 170 191 18.5
164 180 176 8.0 191 15.0
165 157 176 170 191 1856
165 163 176 174 154 9.8

[Continuad)
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Height Cv Height Cw Height Cv

165 174 176 18.2 184 188
165 170 178 113 194 18.4
168 16.3 177 172 154 1.0
1685 141 177 18.3 195 18.0
166 14.2 178 6.4 195 182
166 1.7 179 161 198 176
166 14.9 1749 176 196 18.3
166 17.2 178 178 187 189
1657 6.7 179 16.1 197 19,2
167 16.5 179 16.0 200 1.0
167 4.7 178 168.0 200 19.2
167 14.3 | 179 1156 202 18.6
167 14.8 178 175 202 184
167 15.0 180 18.0 182 20.0
167 5.5 | 180 174 140 20:0
167 15.4 181 184 190 189:5
168 173 181 15.4

Saurce; Clga Kwast-Rabben, Ph.D. Used with pormission.

Solution:  The scatter diagram and leasl-SqUATES TEEIesion line ure shown in Figure 9.7.2.
Let us assume that the investigator wishes fo obtain i regression
equation to use for estimating and predicting purposes, In that case the
sample correlation coeflicient will be obtained hy the methods disgussed
under the regression model,

2k .
a0
19

18

Ly Lanits]
=
]

12

i [ . i
150 160 170 180 190 200
Hatght formi

FIGURE 9.7.2 Height and cervical (spine] potentials in eligit 1
stimulation for tha dats deseribed in Example 9.71.
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R denokes
X denotes

The regression eguation is

Cyv = -3.20 + 0.11% Height

Predictor Coaf SE Coef T =}
Constant ~3.,198 1.0186 -3.15 0002
Heiaht 0.114587 0.005792 19,78 0.o00
S = 0,8573 E-Sg = 71.9% R-Gg(adi) = 71.7%

Analysis of Variance

Source oF £5 MS P P
Regression 1 Z87.58 287 .56 391.30 . 000
Residual Error 153 112.44 D73

Total 154 400,00

Unusual Observations .
obsg Height Cv Fit SE Fit Residual St Residl
39 lae 14.1000 15.8198 0.0BR5 -1, %199 -2, 0280
42 1686 13.8000 15.8199 0.0865 -1.91599 — 2250
165 18% 15. 8000 17 .5384 Q. BTI0 1738 -2, (R
151 208 18.6000 I9.9443 0.1706 ~1.3443 =1.60 58
152 202 18.6000 19,9443 G.1706 -1.3443 -1 .'6fs
153 182 20.0000 17,6529 0.0728 2.3471 2,758

an skservation with a large standardized residual
an observation whose X wvalue gives it large influence.

FIGURE 8.2.3 MINITAE output for Example 9.71 using the simple regression procedurs

The Regression Equation

Let us assume that we wish to predict Cv levels from knowledge of heights. In that g
we treal height as the independent variable and Cv level as the dependent varigble an
obtain the regression equation and correlation coefficiem with MINITAB as sh
Figure 9.7.3. For this example r = V.719 = 848, We know that r is positiv
the slope of the regression line is positive, We may also use the MINITAB
provedure to obtain r as shown in Figure 9.7.4,

The printout from the SAS” correlation procedure is shown in Fioure 9.7.5. No
that the SAS™ procedure gives descriptive medsures for ench variable as well ;ﬂ; he |
value for the correlation coefficient, |

When a computer is not available for performing the caleulations, ¢ may
obtained by means of the following formulas;

[BIEx? — (Sx)¥n]
S 3 T
N 2 = (2 5)¥n
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Dialog Box: Session command:

f-.i'=-| » Basic Statistics » Correlation MTE > Correlation €1 2.

CI' C2 in Variables, Click OK.

eslations: Height, Cv

gon correlation of Height and Cv = 0,848
Walue = 0.000

FIGURE 9.7.4 MINITAB procadure for Example 9.71 using the correlation commancd.

The CORR Procedure
2 Variables: HEIGHT CV

Simple Statistios

u Mean Std Dew Sum Mirrd mum Maximum
1565 17504516 11.,92745 27132 las ., ooooo 202, 00000
155 16.85613 1.61165 2613 13.000400C 21.00000

Pearson Correlation Coefficients, N = 135

Prob > |r| wunder HO:; ERho=0
HEIGHT LT
HEIGHT 1.00000 0.847EH
<., 0001
(g 0.R4THE 1.,.00000

<., 0001

FIGURE 9.75 S5AS printout for Example 9.71.
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An alternative formula for computing r is given by

B nX xa— (Zx)E )
VaZal = ExPVaZyi - (By)

r

An advantage of this formula is that ¢ may be computed without fist com
b, This s the desirable procedure when it is not anticipated that the regression e
will be used.

Remember that the sample correlation coefficient, . will always have the
sign as the sample slope, b,
EXAMPLE 9.7.2
Refer to Example 9.7.1. We wish 1o see if the sample value of r = 848 is of sofficin
magnitude 10 indicate that, in the population, height and Cv SEP levels age corel
Solution:  We conduct u hypothesis test as follows.

L. Data. Sec the initinl discussion of Example 9.7.1.
2. Assumptions. We presume that the dsSUIMPHONs given in Sacrim
ure upplicable,
3. Hypotheses,
Hyp=10
Hyrp=10

4

Test statistic. When p = 00, it can be shown that the ApprOpTIAS 1l
stalistic is
= B
===\ gl —
V= 4

5. Distribution of test statistic,. When Hyy s true and the ASSUIIPHONG &

met, the test statistic is distributed as Students ¢ distribution with -

degrees of freedom,
6. Decision rule. If we let @ = 03, the critical values of ¢ in the. i
example are & 19754 (hy interpolation). If, from our duta, we
pute i value of 1 that is either greater than or equal to +1.9754 o
than or equal 1o —1.9754, we will reject the null lwpithesis,

7. Caleulation of test statistic. Our calculaied value of §is
[ 153

e = U

3
=T A

8. Statistical decision. Since the computed value of the test
exceed the critical value of 1, we reject the null hypothesis. i
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9. Conclusion, We conclude that, in the population, height and SEP lev-
¢lsin the spine are linearly correlated,

10. p value. Since r = 19787 = 2.6085 (interpolated value of r for 153,
S95) we have for this test, p = 003, [ |

A Test for Use When the Hypothesized p Is a Nonzero Value
The use of the ¢ statistic computed in the above test is appropriate only for testing
Hyip = 0. 1 it s desired to test Hy: p = py,, where gy is some value other than zero,
we must use another approach, Fisher (3) suggests that r be transformed to 2, as follows:

| =+ r
In J_ 9.7.4)

3

where In is o natural logarithm. It can be shown that 2, s approximately normally distrib-
uted with a mean of =, = 51" (L + pl/il — p)) and estimated standord deviation of
|

\-"ﬁ (9.7.5)

fe —

To test the noll hypothesis that g o1s equal o some value other than zero, the test
statistic s

Z= “V—_‘—q (9.7.4)
LN =

which follows approximately the standard normal diserthution.

To determine =, for an observed r and =, for a hypothesized p. we consult Table 1,
thereby avoiding the direct use of nutural logarithms,

Suppose in our present example we wish o 1est

Hyp = 80
azainst the alternative
Hyip # 580

al the U5 level of significance, By consulting Table | (and interpolating), we find that
for

r= 848 1 = 124726
and for

o= e Zp = [ 4 EA]
O test statistic, ithen, 1%

[.24726 — 1.09861

gl = 1.43
Liwv155—3
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Singe 1.83 is less than the critical value of = = 1,96, we are unable to reject H, We
conclude that the population correlation coefficient muy he 80,

For sample sizes less than 23, Fisher's Z transformation should be used with ca-
tion. if at all. An aliernative procedure from Hotelling (6) may be used for sumple si_z:':&';
equal to or greater than 10, In this procedure the following transformation of r is employed:

3.+ F
F ol e
4
The standard deviation of 2% is
I
e = —
: Vi — |
The test statistic s
__._.n- = 5*"..-
o= — = I:*_gu]m
/v =1l
where
{:ﬁ:" 1 p:'

{* (pronounced zeta) = 2, —

Critical values for comparison purposes are obtained from the standard normal
distribution, !
lo our present example. 1o test Hy:p = B0 against My p # 80 using (e
Hotelling transformation and o = 03, we have

3(1.24726) + 848

o = 124726 ~3015%) = 1.2339

e = 109861 — %0 F B
4(155)

Z% = (1.2339 — 1.0920) V155 — 1 = 1.7600

Since 1.7604 is less than 1.96, the null hypothesis is not rejected, and the same concl
sion 15 reached as when the Fisher tramsformation is used,

Alternatives In some situations the data available for analysis do not meet the s
tions necessary for the valid use of the procedures discussed here For testing hypotheses
a population correlation coefficient. In such cuses it may be more appropriate t use the

man rank correlation echnique discussed in Chapter 13. )

Confidence Interval for p Fisher's tunsformation muy be used to constm
10001 — &) pereent confidence intervals for p. The general formula for o confidence
interval

estimator = (reliability {actoristandard error)
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is employed. We first convert our estimator, r, to z,, construct a confidence interval about
2, and then reconvert the limits to obtain a 100(1 — a) percent confidence intervil
ubout p. The seneral formula then becomes

2, £ z(/ Vi = 3) (9.7. 1403
For our present example the 93 percent confidence interval for =, is given by

1.24726 = 1.96(1/ V155 - 3)
108828, 1.40624

Converting these limits (by interpolation in Appendix Table 1), which are vatues
ol =, into values of r gives

s I

LOBR2R 7962
140624  BBG6

We are 95 percent confident, then, that p is contained in the interval 7962 to B8866.
Because of the limited entries in the table, these limits must be considered as only
dpproxinmale.

(ERCISES

In each of the following exercises:

() Prepeue o scabter diagram,

(b Compute the sample correlation coefficient.

{€) Test Myt po= 0 at the 05 level of signifcance and state your conclusions:
() Dretermine the povaloe for the lest

() Constroct the 95 percent confidence imerval for p.

970 The purpose of a study by Broswn and Pepsley (AR was 10 characterize acule hepatiiis A n

patients more than 40 years old, They performed a retrospective chart review of 20 subjects whi
were disgnosed with acute hepatitis A, but were not hospitalized, OF interest was the use of age
{vears) to predict bilirubin levels (mg/dl), The Tollowing data were collected.

Age [ Years) Bilirubin (mgddl) Age (Years) Bilirubin (mp/dl
T8 15 44 T
72 12.4 42 I8
1) [4.3 45 R
A A0 TS B
54 14.1 47 3.3
48 109 ¥ 5.1
46 123 7 165

(Cotrinied
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Age (Years) Bilivubin (mg/dl) Age (Years) Bilirubin (mg/d1)
42 1,00 52 i3
58 52 58 56
o Sl 45 1.8

Sowrces e B, Brosen, MLD, Used with PETTII ST,

7.2 Another variable of imerest in the study by Reiss e al, (A-3) (see Exercise 9.3.4) was purtigl
thromboplastin (aPTT, the standured test usad o monitr heparin anticoagulation, se he d'm
the following table 1o examine the correlation between alPTT lovels as meastred by i
CodguTheck poim-ol-girp assay and standard laboratory hospital assiy in 90 subjecis TCCEIVing
heparin alone, heparin with warfarin, and watrfarin amd CXOCTRAri,

Wartrin and
Hepurin Warfarin Exoenoxapurin

Coagulheck Hospital Cuagulheck Heospital CouguChevk
alTT alPTT aPTT alPTT al’TT
449.3 T4 LE. 8] I 5
579 86y 312 6.2 7
5940 756 58.7 Az 3ra
173 545 75,2 330 S
42,3 5.7 I&,0 45,7 41.2
4.3 9.5 H16 Bl RIEN
AT 712 20.5 4 231
354 (33 E20 Thd 532
23 276 SRT 859 27.3
gl 526 £, 8 sS40 h7.4
i3 L6 YR o4 KRN
w4 R £1.2 K5 45,1
0l 3 iy, 2 5.1 35 i6.2
nE L Eh . 32.8 2600
747 9.3 G54 31, 074
I 50000 1F8.8 33.7 T3 0.7
A2 4 0.4 128.3 111.] 262
20,9 652 (). 5 80,5 )4
5,5 e 1530.0 1560 an2
44.7 915 3RS 46,5 1.0
1.0 Uihs =LA LA 53.6
64 i3h 1124 667 80
539 LA 267 245 [H.0
575 fith 1) 49.7 478 TRA
A%l 414 by ] 633 733
Ta.8 1.7 G = 43.5 T3
A25 333 J8.0 S0 430
1257 1424 924 (K5 49.3
Tl GH.2 46.2 w24 218
1438 1083 GlA 017 358

souree Cartis B Haas, Pharm, DL Used with el s,
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Exercises 453

In the study by Parker et al. (A-4) (see Exercise 9.3.31, the authors also looked at the change in
AUE farea under the eurve of plasma concentration of digoxin) when comprring digoxin levels
iken with and without grapefruit juice, The following table gives the AUC when digoxin wis
comsumed with water [ng <hr/ml) and the change in ALC compared 1o the change ALC when
disoxin s -taken with grapefrut juice (€ iFY, b,

Water AUC Level Chunee in AUC

{ng - hefml) with GFJ (%)
ER ] 174
5.50 4.5
531 %5
822 208

LLo —267
950 -20.3

11.28 164

Gauree: Robert B, Parker, Phgem. 1. Used
with permiission

An-article by Tuzson et al. (A=) in Archives of Physical Medicine and Rehahilitation reported the
following data on peak knee velocity in walking (measured m degrees per second) o Mexion and
extension for 18 subjects with cerebral palsy.

Flexiom ("fs) Extension (*/s)
11} 1L
150 Bl
210 ]
235 |65
2400 210
155 155
440 444
[ 10 ]
4] BTN
160} B
[ 50 251
41D 275
75 3d41)
4441 S0
Sk 430
(KD 300
300 304
320 25

Sumiree: - Ann B Tusson, Revin B
Gripista, wnd Mark E Abel, “Spastic
Velowily Threshold Consirois Functionl
Performundes in Cergbral Palsy” Amhives
of Plresiea! Medicine and Rehabilimnon,
B0, 13651368
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9.7.5  Amyotrophic lateral sclerosis (ALS) is characterized by & progréssive decline of motor functioa

The degenerative process affects the respiratory system. Butz et al. (A-10) investigited the loagk
tudinal impact of noctumal noninvasive psitive-pressure ventilation on patients with ALS, Pr
o treatment, they micasured partial pressure of arterial oxyveen (P and partial pressure of g
rial earbon dionide (Paco,) in patients with the tisgase. The resulls were as follows:

Paco, Pioy

400 101.0

47,0 LEL )

A4.0) [ 3200

424 a5

4.0 T2.0

4.0} Th.0

530 67.2

Sk FLLY

AH.0 T30

43,0 TR

345 Al

4.0 2.0

43,1} ]

44.3 113.0

330 a2

414 fHin 7

330 67.0

43,1 175

324 R

3T T1.03

345 bl

43,1 T4.7

13.0 LA

59.9 614

2.6 FE5

34,1 ThYe ; ; .

45,7 65.3 ?nu‘m:: _."v1. H‘u:r.__h. H, Winllinsky, U, Widemuth-Cutrinescy,
i A Sperfeld, 8. Winter, I H. Mehrkens, A, C. Luelislpah, il

40.6 803y Sehreiber, "Longitudinal Fifects of Soninvisve Powsitive-

6.6 532 Pressure Venrilation fn Patents with Agmyotrophic Later)

0.0 T1ar  Sclerosis American Jeaeemal o Mediza! Relrabitirion, 82

(20013 ) A0T-ni)a,

A simple random sample of 15 apparently hiealthy children between the nges of & mionthy
years yielded the following data on age, X, and Lver volume per unit of body weight (

X Y X ¥
x <] [0 26
7 55 1101 i3

25 41 0.9 23

4.1 34 1.5 3l

(Cerntiried )
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