Alkyl Halides

Nucleophilic Aliphatic Substitution and Elimination

Dr. huda saleh abood For 1st Stage Students

Reactions

Nucleophilic Substitution

A halide ion is an extremely weak base (conjugate base) (Good leaving group).

 X^- H⁺ (strong acid) \rightarrow X⁻ (weak base) + H⁺

When attached to carbon,

Х-С

halogen can be readily displaced as halide ion by other, stronger bases.

These **bases** possess an **unshared pair of electrons** and are seeking a relatively **positive site**, that is, are seeking a nucleus with which to share their electrons.

Called Nucleophilic Reagents Nuc:⁻ (from the Greek, nucleus-loving)

Copyright © 2010 Pearson Prentice Hall, Inc.

* The halogen atom on the alkyl halide is replaced with a nucleophile (Nuc⁻).

* Since the halogen is more electronegative than carbon, the

C—X bond breaks heterolytically and X^{-} leaves.

Elimination

This reaction is important in the synthesis of alkenes by basic reagents

Elimination

- * Elimination reactions produce double bonds.
- * The alkyl halides loses a hydrogen and the halide.
- * Also called dehydrohalogenation (-HX).

Kinetics of nucleophilic aliphatic substitution. Second-order and first-order reactions

1- Nucleophilic Substitution Bimolecular, S_N2

Let us take a specific example, the reaction of methyl bromide with sodium hydroxide to yield methanol:

 $CH_3Br + OH^- \rightarrow CH_3OH + Br^-$

We say that the **rate of reaction** depends upon both [OH⁻] and [CH₃Br], and we indicate this by the expression:

rate = k [CH₃Br][OH⁻] Second-order kinetics

Nucleophilic Substitution Monomolecular, S_N1

Ex: Reaction between *tert*-butyl bromide and hydroxide ion:

$$\begin{array}{ccc} CH_{3} & CH_{3} \\ CH_{3}-C-CH_{3} + OH^{-} & \rightarrow & CH_{3}-C-CH_{3} + Br^{-} \\ Br & OH \end{array}$$

The rate of reaction of tert-butyl bromide depends only upon [RBr].

This is indicated by the expression

rate = *k* [RBr] **First-order kinetics**

Mechanism, stereochemistry and stability ($S_N 2$)

Features:

- * Attack from backside
- * T.S. formation
- * Inversion in configuration

When (-)-2-bromooctane is allowed to react with sodium hydroxide under conditions where second-order kinetics are followed, there is obtained (+)-2-octanol.

A reaction that yields a product whose configuration is opposite to that of the reactant is said to proceed with *inversion of configuration*.

Differences in rate between two S_N2 reactions seem to be due chiefly to *steric factors*.

As the number of substituents attached to the carbon bearing the halogen is increased, the reactivity toward S_N^2 substitution decreases.

S_N2 substitution: relative reactivity toward I⁻

Increasing the bulk of substituents led to raises the energy of transition state (T.S) and slows down reaction.

Ethyl

tert-Butyl

Mechanism, stereochemistry and stability ($S_N 1$)

Features:

- * Attack from two sides
- * Carbonium ion (carbocation) formation
- * Racemic mixture

Stereochemistry

Reactivity

The order of reactivity of alkyl halides in $S_N 1$ reactions is the same as the order of stability of carbonium ions. In $S_N 1$ reactions the order of reactivity of RX is allyl, benzyl > 3 > 2 > 1 > CH₃X.

1. Increasing substitution by carbon stabilizes carbocations

2. Adjacent carbon-carbon π bonds stabilize carbocations

Why? Resonance.

Resonance allows for the positive charge to be distributed over multiple carbons, which is a stabilizing influence.

S_N1, Rearrangement

If the $S_N 1$ reaction involves intermediate carbonium ions, we might expect it to show one of the characteristic features of carbonium ion reactions: rearrangement.

In an S_N^2 reaction, on the other hand, the halide ion does not leave until the nucleophilic reagent has become attached; there is no free intermediate particle and hence we would expect no rearrangement.

Mechanism:

In the case of the neopentyl cation, however, the initially formed 1°-carbocation may be converted to a more stable 3°-carbocation by the 1,2-shift of an adjacent methyl group with its bonding electrons.

$S_N 2 vs. S_N 1$, Competition

* Nucleophilic substitutions that follow first-order kinetics the reactivity sequence $3 > 2 > 1 > CH_3X$,

$$RX = \underbrace{\frac{S_{2} \text{ increases}}{CH_{3}X \ 1^{\circ} \ 2^{\circ} \ 3^{\circ}}}_{S_{N}1 \text{ increases}} \underbrace{S_{N}2}{vs.}$$

* Concentration of nucleophilic reagent, high concentration of the nucleophilic reagent favors the S_N^2 reaction; low concentration favors the S_N^1 reaction.

* The nature of the nucleophilic reagent (strong or weak), neopentyl bromide reacts with ethoxide ion by the S_N^2 mechanism and with ethyl alcohol by the S_N^1 mechanism **The polarity of the solvent:** The more polar the solvent, the stronger the solvation forces and the faster the ionization. For example, from 80% ethanol to the much more polar water should speed up ionization and hence the rate of the $S_N 1$ reaction.

 $\begin{array}{cccc} R-X & \longrightarrow & \begin{bmatrix} \delta_+ & \delta_- \\ R & \cdot & X \end{bmatrix} & \longrightarrow & R^+ + X \\ Reactant & Transition state & Products \\ More polar than reactant: \\ stabilized more \\ by solvation \end{array}$