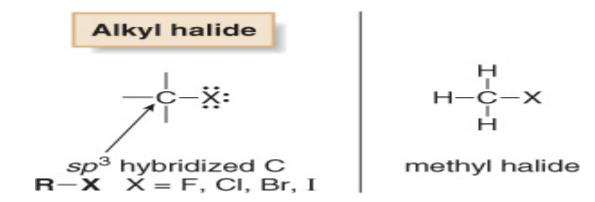
Alkyl Halides

Nucleophilic Aliphatic Substitution and Elimination

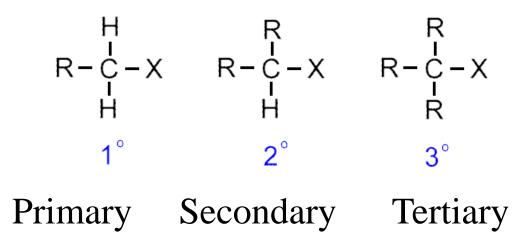
Dr. huda saleh abood For 1st Stage Students

Alkyl halides


Alkyl halides are organic molecules containing a halogen atom bonded to an sp3 hybridized carbon atom.

- Alkyl halides are classified as primary (1°), secondary (2°), or tertiary (3°), depending on the number of carbons bonded to the carbon with the halogen atom.
- The halogen atom in halides is often denoted by the symbol "X"

General structure of alkyl halides


R-X (X = F, Cl, Br, I)

R is any simple alkyl or substituted alkyl group

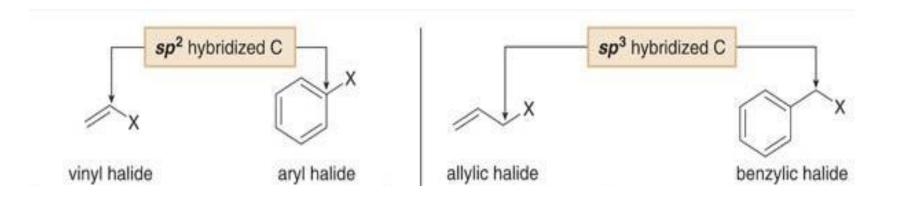
Classification

Alkyl halides can be classified according to the class of the carbon that the halogen is attached to.

There are other types of organic halides, These include:


• Vinyl halides have a halogen atom (X) bonded to a C=C double bond.

• Aryl halides have a halogen atom bonded to a benzene ring.


• Allylic halides have X bonded to the carbon atom adjacent to a C=C double bond.

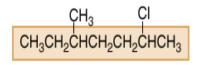
• Benzylic halides have X bonded to the carbon atom adjacent to a benzene ring.

Examples of 1°, 2°, and 3° alkyl halides

Four types of organic halides (RX) having X near a π bond

Nomenclature

Common name: replacing **—ane** of alkane by **—yl** and follow by **halide** for longest chain.

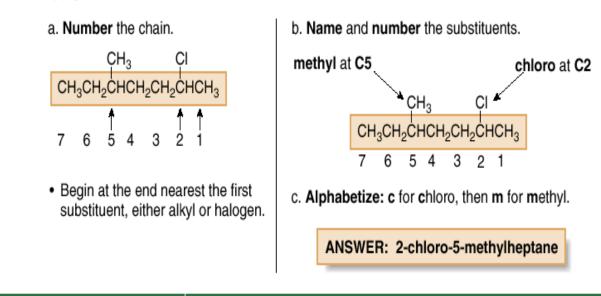

IUPAC name: prefixing **Halo-** followed by **alkane**, as in alkanes.

How To Name an Alkyl Halide Using the IUPAC System

Example Give the IUPAC name of the following alkyl halide:

 $\begin{array}{ccc} \mathsf{CH}_3 & \mathsf{CI} \\ \mathsf{I} \\ \mathsf{CH}_3\mathsf{CH}_2\mathsf{CHCH}_2\mathsf{CH}_2\mathsf{CHCH}_3 \end{array}$

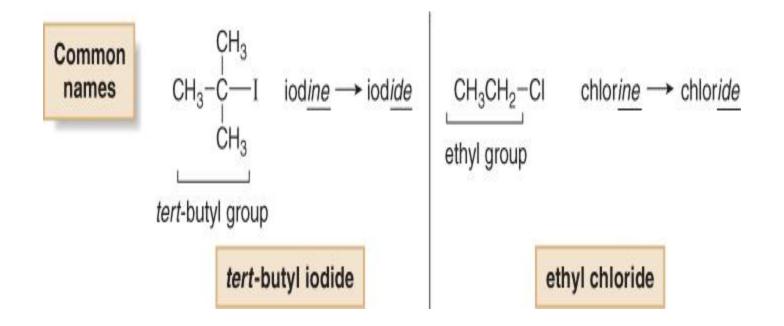
Step [1] Find the parent carbon chain containing the halogen.

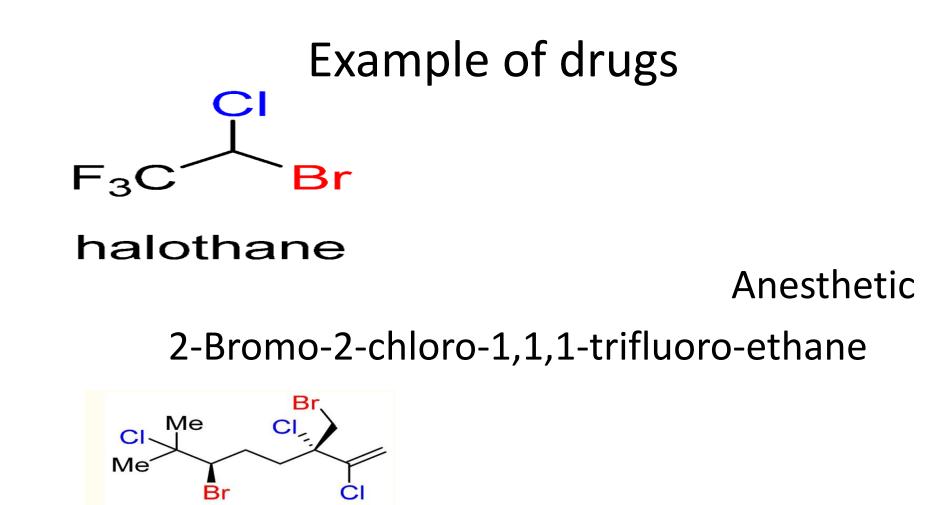


 Name the parent chain as an *alkane*, with the halogen as a substituent bonded to the longest chain.

7 C's in the longest chain

7 C's ---→ heptane


Step [2] Apply all other rules of nomenclature.



Common names

Common names are often used for simple alkyl halides. To give a common name: 1-Name all the carbon atoms for longest chain of the molecule as a separate alkyl group by replacing –ane of alkane by –yl. 2-Name the halogen (replace to halide) that bonded to the alkyl group .

Combine the names of the alkyl group and halide, separating the words with a space.

6-Bromo-3-(bromomethyl)-2,3,7trichloro-7-methyl-1-octene

(+)-halomon

Common name	Structure	IUPAC name	No. of C atom
Methyl bromide	H ₃ C Br	Bromomethane	1
Ethyl bromide	Br	Bromoethane	2
n-Propyl bromide	Br	1-Bromopropane	2
lsopropyl bromide	Br	2-Bromopropane	3

n-Butyl bromide	Br	1-Bromobutane
sec-Butyl bromide	Br	2-Bromobutane
Isobutyl bromide	Br	1-Bromo-2-methylpropane
tert-Butyl bromide	Br	2-Bromo-2-methylpropane

Q/ Give the structure and IUPAC name of n-, iso-, sec-, tertand neo-pentyl chloride.

Q/ Give the common and IUPAC name of the following:

 $\begin{array}{c} \mathsf{CH}_3 & \mathsf{Br}\\ {}_{|} \\ \mathsf{CH}_3\mathsf{CHCH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_3\end{array}$

CI $H_3CHCH_2CH_3$

 $CH_2CH_2F \\ \overset{|}{C}H_3CH_2CH_2CH_2CH_2CH_3$

Physical properties of alkyl halide

• Because of greater molecular weight, haloalkanes have considerably higher boiling points than alkanes of the same number of carbons.

n-Pentane (36 °C) n-Pentyl chloride (108 °C)

- For a given alkyl group, the boiling point increases with increasing atomic weight of the halogen, so that a fluoride is the lowest boiling, an iodide the highest boiling.
- For a given halogen, b.p. rises with increasing number of carbon atoms.

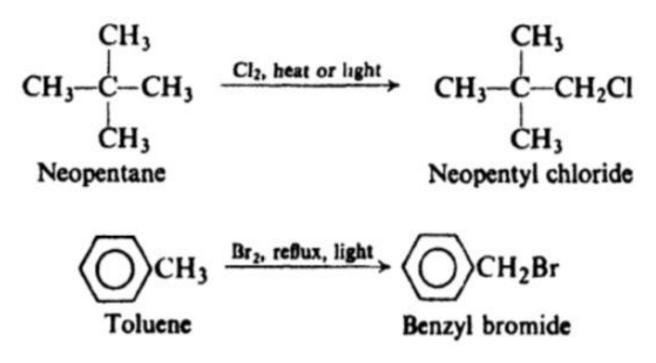
n-Propyl chloride (47) n-Butyl chloride (78.5)

- The branching lowers the b.p. n-Butyl bromide (102) sec-Butyl bromide (91)
- In spite of their polarity, alkyl halides are insoluble in water, probably because of their inability to form hydrogen bonds. They are soluble in the typical organic solvents.
- Iodo, bromo, and polychloro compounds are more dense than water.

Preparation

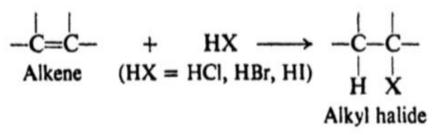
1- From alcohols

Alcohols react with hydrogen halides or phosphorus halides.

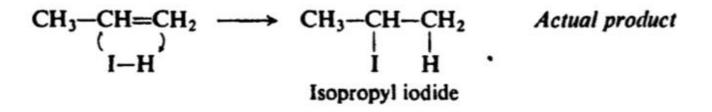

 $R-OH \longrightarrow R-X R-X$

conc. HBr CH₃CH₂CH₂OH CH₃CH₂CH₂Br or n-Propyl alcohol NaBr, H2SO4. n-Propyl bromide heat CH-CH₃ CH CH-ÓН Br 1-Phenylethanol 1-Bromo-1-phenylethane a-Phenylethyl alcohol a -Phenylethyl bromide

2- Halogenation of certain hydrocarbons.


Under the influence of ultraviolet light, or at 250-400, chlorine or bromine converts alkanes into chloroalkanes (alkyl chlorides) or bromoalkanes (alkyl bromides.

$$R-H \xrightarrow{X_2} R-X + HX$$


3- Addition of hydrogen halides to alkenes. Markovnikov's rule

An alkene is converted by hydrogen chloride, hydrogen bromide, or hydrogen iodide into the corresponding alkyl halide.

$$CH_3 - CH = CH_2 \xrightarrow{} CH_3 - CH - CH_2$$

n-Propyl iodide

4- Addition of halogens to alkenes and alkynes

Alkenes are readily converted by chlorine or bromine into saturated compounds that contain two atoms of halogen attached to adjacent carbons.

> $\begin{array}{cccc} -C = C - & + & X_2 & \longrightarrow & -C - C - \\ Alkene & (X_2 = Cl_2, Br_2) & & \downarrow & \downarrow \\ \end{array}$ Vicinal dihalide $\begin{array}{cccccc} CH_2 = CH_2 + Br_2 & \xrightarrow{CCl_4} & CH_2 - CH_2 \\ Ethene & & & & & \\ \end{array}$ (Ethylene) 1,2-Dibromoethane (Ethylene bromide) $CH_3CH=CH_2 + Br_2 \xrightarrow{CCl_4} CH_3-CH--CH_2$ Propene Br (Propylene) 1,2-Dibromopropane (Propylene bromide)

5- Halide exchange (Finkelstein reaction).

$$R - X + I^{-} \xrightarrow{acetone} R - I + X^{-}$$

An alkyl iodide is prepared from the corresponding bromide or chloride by treatment with a solution of sodium iodide in acetone, the less soluble bromide or chloride precipitates from solution and can be removed by filtration.

 $CH_3CH_2Br_{(acetone)} + Nal_{(acetone)} \rightarrow CH_3CH_2I_{(acetone)} + NaBr_{(s)}$