

Colloidal dispersions; Properties

By
Dr. Mohammed Sattar
2016/2017

1

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Outlines

- >Purification.
 - ➤ Dialysis.
- ➤ Colloids properties:
 - ➤ Kinetic.
 - ➤Optical.

Purification

- Many sols contain micro-molecules in the form of true solution. which may be undesirable for any number of reasons; e.g., electrolyte impurities: cause the flocculation of the sol.
- To get red from these impurities, the following should be used:
- 1. Dialysis
- 2. Electro dialysis
- 3. Ultrafiltration

3

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Dialysis

Depend on *difference in size* between colloidal particles & molecular particles (impurities).

- Technique; use semi permeable membrane eg. nitrocellulose
- pore size of used semi permeable membrane prevent passage of colloidal particles & permit passage of small molecules & ions (impurities) such as urea, glucose, and sodium chloride, to pass through.

Properties of colloids

- A) Kinetic properties.
- B) Optical properties.
- C) Electrical properties.

7

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Kinetic properties

Which relate to the motion of the particles within the dispersion medium as following:

- 1. Thermal motion
 - a. Brownian motion.
 - b. Diffusion.
 - c. Osmotic pressure.
- 2. Gravitational movement i.e. Sedimentation.
- 3. Movement due to external force i.e. Viscosity.

Brownian movement

- **Definition**: colloidal particles are subjected to random collision with molecules of the dispersion medium (solvent) so each particle move in irregular and complicated zigzag pathway.
- First observed by Robert Brown (1827) with pollen grains suspended in water.
- The velocity of particles increases with decreasing particle size and viscosity.
- Increasing the viscosity of dispersion medium (by glycerin) decrease then stop Brownian motion.

Diffusion

- As a result of Brownian motion particles pass (diffuse) from a region of **higher** concentration to one with **lower** conc.
- Rate of diffusion is expressed by; Fick's first law:

dm/dt = -DA dc/dx

- Where dm is the mass of substance diffusing in time dt across an area A under the influence of a concentration gradient dC/dx.
- The minus sign denotes that diffusion takes place in the direction of decreasing concentration.
- D is the diffusion coefficient.

Osmotic pressure

The method is based on Van's Hoff's law;

$$P = RTC / M$$

- From the equation;
- a) The osmotic pressure (P) depends on molar conc, of the solute (C) & on absolute temp. (T).
- b) The osmotic pressure is inversely proportional tomolecular weight (\mathbf{M}).

R= molar gas constant

• The equation is valid for very dilute solutions in which the molecules do not interact mutually.

Sedimentation

· Stoke's law;

$$V = 2r^{2}(P-Po) g / 9 \eta$$

- v: velocity of sedimentation of spherical particles.
 p: density of the spherical particles.
 - po: density of the medium.
 η: viscosity of the medium.
- g: acceleration due to gravity.
 At small particle size (less than 0.5 um) Brownian motion is significant & tend to prevent sedimentation due to gravity & promote mixing in stead.
- so, we use an ultracentrifuge which provide stronger force so promote sedimentation in a measurable manner.

Viscocity

- The resistance to flow of a system under an applied pressure
- Viscosity of colloid allows
 - 1- calculation of the molecular weight.
- 2- Provide useful information about the shape of the colloidal particles.
- Note
- Spherocolloidal dispersions are of relatively low viscosity.
- On the other hand Linear colloidal dispersions are of high viscosity.
- If linear colloidal particles coil up into spheres, The viscosity of the system falls due to changing the shape.

Optical properties:

- Light scattering (Tyndall effect).
- ·Ultra microscope.
- Electron microscope.

19

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Light scattering (Tyndall effect)

True solutions do not scatter light and appear clear but colloidal dispersions contain opaque particles that do scatter light and thus appear turbid.

>Tyndall effect:

when a beam of light pass through a colloidal sol, scattered light cause the sol to *appear turbid*.

>Importance of light scattering measurements:

- 1) Estimate particle size.
- 2) Estimate particle shape.
- 3) Estimate particles interactions.

Electron microscope

- Give actual picture of the particles (up to 5A).
- Used to observe the size, shape and structure of sols.
- High energy electron beams are used. (have greater resolving power)
- One disadvantage is;
- only dried samples can be examined. Not give information on solvation.

23

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Thanks for your attention

